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ABSTRACT 

Three-dimensional integration is an emerging chip fabrication technique in which 

multiple integrated circuit dies are joined using conductive posts. 3D integration offers 

several performance and security advantages, including extremely high bandwidth 

between the two dies and the ability to augment a processor with a separate die housing 

custom security features. This thesis performs a feasibility and requirements analysis of a 

data transformation coprocessor in a three-dimensional integrated circuit. We propose a 

novel coprocessor architecture in which one layer (control layer) houses application-

specific coprocessors for cryptography and compression, which provide acceleration for 

applications running on a general-purpose processor in another layer (computational 

layer). 

 The main application supported from our proposed 3DIC is the one that performs 

real-time trace collection, compresses the trace, and optionally encrypts the compressed 

trace, which protects the data from interception during transmission to permanent off-

chip storage for offline program analysis. 

 Although we are not building a hardware device for simulation we present the 

architecture for a 3D data transformation processor and a rationale for each of the key 

design decisions, including a compression study that determined the optimal compression 

algorithm for a specific set of traces. 
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I. INTRODUCTION  

A. MOTIVATION 

 Application-specific coprocessors, including those for cryptography and 

compression, can provide significant acceleration and power savings to programs 

requiring their services. While most coprocessors have traditionally been constructed as a 

separate chip connected to the main CPU over a relatively slow bus connection, 3D 

integration is an emerging technology that offers significant performance advantages and 

power savings over traditional systems that combine chips at the circuit board level. [1], 

[2], [3], [4]. With 3D integration, two or more dies can be fabricated separately and later 

combined into a single stack using vertical conductive posts. The vertical posts allow the 

3D coprocessor to monitor and even override or disable the internal structures of a CPU, 

something that traditional circuit-board-level coprocessors cannot do. In this thesis, we 

propose a novel coprocessor architecture in which one layer houses application-specific 

coprocessors for cryptography and compression, which provide acceleration for 

applications running on a general-purpose processor, or CPU, in another layer. A 

compelling application for such a system is one that performs real-time dynamic program 

analysis of the internal structures of the CPU layer, collecting data on instructions 

executed, memory accesses, etc., and compressing this application trace data to a smaller 

size so that it can be transmitted off-chip to permanent storage for offline analysis. 

Furthermore, an optional encryption step, performed by the cryptographic circuitry in the 

coprocessor layer, can protect this compressed data from interception. 

 In this thesis, we set out to answer the following research question: What is a 

secure and cost-effective 3D architecture for the real-time transformation (compression or 

encryption) of a stream of data, and what are its performance characteristics? Corollary 

questions to be answered in pursuit of this question are: What are the requirements of a 

data transformation coprocessor in a three-dimensional integrated circuit? Which existing 

trace-file compression algorithms and architectures are optimal for compressing dynamic 

program-analysis data? What performance characteristics can be expected of a 3D 

encryptor or compressor? What are the benefits of a 3D implementation over a 2D 
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implementation? What is the interface between the coprocessor layer and the processor 

layer? How is the coprocessor initialized and invoked? How do the processor and the 

coprocessor communicate? What modifications to the computational plane are required to 

support an optional control plane? What signals should be monitored, and can the 

interface be designed to support a wide variety of monitoring tasks? In addition to the data 

transformation circuitry, what other elements are required in the control plane (e.g., 

memory buffers, I/O controllers, etc.)? 

 3D integration is an emerging chip fabrication technique in which multiple 

integrated circuit dies are joined using conductive posts. 3D integration offers several 

performance and security advantages, including extremely high bandwidth between the 

two dies and the ability to augment a processor with a separate die housing custom 

security features. This thesis will perform a feasibility and requirements analysis of a data 

transformation coprocessor in a three-dimensional integrated circuit (3DIC). This thesis 

will explore the design of a 3D system consisting of one die housing a general-purpose 

processor and another housing a data-transformation coprocessor featuring either 

cryptographic or compression functions. 

 Traditional 2D cryptographic coprocessors are connected to general-purpose 

processors at the circuit-board level, or, in a multi-core, system-on-chip (SoC) at the chip 

level. Some processors include cryptographic functions in the instruction-set architectures 

(ISA). For some applications, a 2D implementation is sufficient; however, other 

applications may require the high bandwidth possible only with a 3D implementation. 

 With respect to compression, this thesis will study the principles, performance, 

and compression ratios of algorithms developed specifically for compressing trace files of 

a processor's execution and study pervasive industrial scenarios in which compression 

coprocessors are employed. The results will facilitate the design of a layer in a 3DIC for 

compressing data streams such as dynamic program profiles collected from another layer, 

thus enabling offline security analysis by reducing off-chip communication and storage 

costs. 

 With respect to cryptography, this thesis will study basic principles and describe 

various cryptographic algorithms. By studying the operation of a specific 2D 
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cryptographic coprocessor, we will try to implement this specific coprocessor in a 3DIC 

design, utilized in order to encrypt the compressed data streams. 

 This thesis will consider how to determine the optimal 3D architecture to meet the 

requirements of a given application scenario that requires the transformation of data. A 

key architectural consideration for the 3D system is the interface between the processor 

and the coprocessors, how the coprocessor is invoked, and how to provide independent 

I/O and power to the coprocessor. 

 Vasudevan et al. have developed the XTRec primitive for recording the 

instruction-level execution trace of a commodity computing system while simultaneously 

ensuring the integrity of the recorded information on commodity platforms without 

requiring software modifications or specialized hardware [5]. Such a primitive can be 

used to perform postmortem analysis for forensic purposes. Our work differs from XTRec 

in that we are proposing a specialized 3DIC approach, and we argue that our proposed 

system would facilitate the capture of additional activity besides the instruction trace at 

higher bandwidth.  

 Our objective is to answer the research question by designing a system that can 

keep track of processor executions in real time, on an untrusted device, and send those 

execution traces to a trusted device for behavior analysis or to storage for subsequent 

forensic analysis. To do this, we propose a three-dimensional, integrated-circuit 

architecture, a trusted piece of hardware comprising a compression and/or cryptographic 

coprocessor (control plane) on top of an untrusted integrated circuit  (computation plane) 

to collect execution traces as they are generated in the processor, then to compress and 

encrypt them for transmission over a common network environment. Finally, the traces 

are analyzed or stored on this trusted device. The proposed architecture is described in 

Figure 1. 
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Figure 1. Block diagram of proposed system, showing the traces of a processor's 
execution in the CPU layer being sent to a compression device in a different layer, 
then being encrypted for transferral to an external analysis device. The only trusted 

devices are the coprocessor layer and the analyzer. 

 We argue that this architecture has the advantage of being faster than other 

architectures such as traditional coprocessors packaged separately and connected at the 

circuit board level, which we refer to as off-chip devices, or traditional 2D chips that 

combine a CPU and a coprocessor on the same die, which we refer to as on-chip devices. 

3D integration offers the potential of less latency than either off-chip or on-chip because 

of the reduced wire length made possible by stacking. While, in on-chip devices, the 

collected traces have to travel a greater distance to be compressed and encrypted than in a 

3DIC over internal connection in off-chip devices, the delays are even bigger, because of 

the distances and slower off-chip buses involved (with limited pins and inherently slow 

bus characteristics). In our proposed architecture, traces are collected dynamically from 
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the CPU layer and routed vertically to a corresponding location in the coprocessor layer 

by means of through-silicon vias (TSV), reducing wire length and corresponding latency. 

A comparison of the three approaches (off-chip, on-chip, and 3DIC) is show in Figure 2. 

 

Figure 2. Comparison of three design paradigms. The horizontal axis represents 
time. Arrow width represents data-transfer capacity: a) coprocessor architecture 

("off-chip;" bus capacity together with wire length and corresponding latency are 
the bottlenecks of this architecture), b) on-chip architecture (although the data 
capacity is high, the internal bus delay reduces the speed of the system), and c) 
3DIC proposed architecture. For the latter, data that is written to the processor 

registers and sent via direct links to the compression registers. The collection of 
trace data can be turned to operate in parallel with their execution. This 

implementation eliminates latency associated with operation of the bus. A 3D 
architecture also provides shorter wire length and reduces the corresponding 

latency due to spatial locality enabled by stacking. 

 The 3DIC architecture is significant because speed is very important in the 

execution trace scenario. This advantage can be applied to dynamic program analysis for 

reverse engineering of malicious software and post-mortem analysis of a system that has 

suffered an attack. The amount of data collected depends on the granularity of the 

collection and the speed of the system. Monitoring and collecting more signals results in a 

larger data stream. The compression of data before it is transferred increases the 

bandwidth to off-chip storage. 
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 Different compression scenarios call for different solutions. For example, in 

common image-compression applications, incoming information can be a periodically 

delayed or deleted (e.g. when input buffers are full) without significantly compromising 

the fidelity of the reconstructed image. However, when collecting execution traces we do 

not want to drop any data or slow down the whole system. Loss of important trace data 

can be disastrous. 

 We argue that, although a 3DIC can cost more, our approach offers several key 

benefits. For example, the CPU layer can be sold to ordinary customers without the 

coprocessor layer attached, but customers with high trustworthiness requirements can 

purchase the joined unit [4]. Moreover, the CPU layer can be manufactured in an 

untrusted foundry, while the coprocessor layer is manufactured in a trusted foundry to 

provide requisite trustworthiness to the combined system. This approach could improve 

the economic feasibility of trustworthy-system acquisition. 

 Trustworthy 3D systems can be used for purposes such as protecting information 

in government, e-business, banking, and voting machines and providing highly 

trustworthy audit and program analysis in real time. 

 A 3DIC architecture also enables stacking different technologies and architectures, 

each optimized separately for its unique purpose [6].  

 A 3DIC implementation of a data-transformation coprocessor has the potential to 

significantly reduce the cost of collecting large amounts of dynamic program-analysis 

data for offline security analysis, in terms of transmission and storage cost. For example, 

the results of this thesis will be useful in a future implementation of a system that uses a 

3DIC to reduce the cost of reverse-engineering malicious software and non-security 

program profiling. The results of this work can also be used to enhance systems with 

custom security functions in a cost-effective and computationally efficient manner. For 

example, systems that would traditionally employ a separate crypto coprocessor chip will 

be able to use a 3D crypto coprocessor, providing performance benefits for high-

throughput applications as well as security benefits. For example, the crypto coprocessor 

can be fabricated in a trusted foundry, and both crypto transformations and key storage 

can be decoupled from the computation plane). 
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B. SCOPE OF THESIS 

 This thesis will explore the architecture and design of 3DIC systems consisting of 

a general-purpose processor die (computational plane) joined with another die (control 

plane), housing either a crypto or compression coprocessor. This will require an 

understanding of 3DIC integrated circuit implementation, coprocessors implementation, 

and existing compression and encryption schemes. 

 This thesis will also present, for comparison purposes, the 2D implementation of a 

system consisting of a general-purpose processor with a crypto or compression 

coprocessor, and the 3DIC implementation of such a system. 

 For each design parameter for the strawman design (e.g., the interface between the 

two dies, the method of communication between them, the method of configuring the 

control plane, the elements residing in the control plane, the fabrication process, the 

modifications to the computation plane, etc.), a choice will be made. The argument for 

each choice will be defended based on analysis of real 3D systems described in the 

literature. An analysis of the performance of the 3D implementation will be made based 

on published figures from the literature, an estimate of the number and size of the vertical 

connections, and traditional 2D architectural simulation. In addition, binary 

instrumentation [7] will be used to generate a variety of trace files representing dynamic 

program-analysis data from the computation plane. These trace files will be used to 

compare the performance and compression ratio for a variety of existing trace 

compression algorithms. For those compression algorithms that are normally 

implemented in hardware, a software program emulating the behavior of the hardware 

will be used. 

C. THESIS OUTLINE 

 This thesis is organized into the following chapters. Chapter II describes the 

concepts, terminology, and commonalities of compression and cryptographic 

transformations and provides a background on 3DIC technology, coprocessors, data 

compression, and cryptography. 
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 Chapter III covers compression algorithms, 2D compression coprocessors, usage 

scenarios, and performance numbers. Chapter IV covers cryptographic algorithms, 2D 

cryptographic coprocessors, usage scenarios, and performance numbers. 

 Chapter V compares and contrasts various factors in 3D architectures, and 

identifies options for a strawman design for real-time transformation of computation plane 

data. Chapter VI describes the ideal 3D system, analyzes the requirements for the 

interface between the processor and coprocessor layers, describes the elements required in 

the control plane, as well as configurable parameters of the crypto and compression 

circuitry, to support a variety of crypto and compression tasks. It also develops estimates 

of the ideal system’s performance in compression and cryptography. Chapter VII 

summarizes the analytical results and describes open issues that call for future work. 
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II. BACKGROUND 

A. INTRODUCTION 

 A large variety of modern technologies such as computer networks and electronic 

commerce, demand private and secure communications for everyday transactions. 

Compression and cryptography provide a useful set of primitives, methods, and modes of 

operation to support fast, accurate, reliable, and secure data transmission. 

David Solomon defines transformation as “a mathematical operation that changes 

the representation of a data item. Thus, changing the decimal number 12,345 to the binary 

11000000111001 is a transform” [8]. 

In the same way we can think about data transformation in the field of 

compression: we can transform audio data, or image pixels to a representation that 

requires fewer bits. David Solomon describes two simple transformation techniques for 

compression: “The transformed items (transform coefficients) are decorrelated. Such a 

transform already achieves some degree of compression, but more can be obtained if 

lossy compression is an option. The transform coefficients can be quantized, a process 

that results in small integers (which can be encoded with variable-length codes) and 

possibly also in runs of zeros (which can be compressed with RLE)” [8]. Similarly, in the 

field of cryptography, ciphers transform plaintext to ciphertext to protect information 

from unauthorized access. Ciphers, together with cryptographic hash functions, help 

protect the confidentiality and integrity of data.  

We argue that incorporating compression and cryptographic functionality into a 

coprocessor embedded in the control plane of a 3DIC can improve the performance of 

data transformation significantly.  

B. 3D IC TECHNOLOGY 

3D integration is an emerging technology in which two or more integrated circuit 

(IC) die are fabricated separately and later bonded together into a single stack. The layers 

are connected using conductive posts to form a single circuit, and the entire stack is 

contained in a single package. Advantages of 3D integration include lower power, high 
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bandwidth between dies, reduced latency, the ability to join disparate technologies, and 

the ability to control the lineage of a subset of the dies, e.g., by manufacturing them in a 

trusted foundry. 

 

Figure 3. Application Trend of 3D Silicon Integration (After [10]). We note the 
rapid increase of 3D technology within a small period of time (approximately two 
years) in conjunction with a significant reduction of the interconnect-via size, from 

50μm to less than 2μm. This is important because reducing via size also reduces 
wire length and, consequently, the thermal effects of a 3DIC. 
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Figure 4. A three dimensional (3D) structure (From [17]). Two dies are joined 

together using face-to-face bonding. The die-to-die vias connect the two dies 
together. Through-silicon vias (TSVs) serve two purposes: (1) they provide 

interconnection between the C4 I/O bumps and the active region of die; and (2) 
they satisfy power-delivery requirements. A heat sink is used for the dissipation of 

the heat. 

1. Main Technologies for Manufacturing 3DICs 

Various 3D technologies are being explored in industry and academia [11], but the 

two most used and promising are wafer-bonding [6], [12] and multi-layer, buried 

structures (MLBS) [13]. Wafer-bonding technology fabricates each active device layer 

separately on a different wafer and then bonds the wafers to form a single entity. On the 

other hand, with MLBS, multiple active device layers are fabricated on a single wafer 

before a back-end process builds interconnections between the devices. In general, there 

are two basic ways of stacking dies: face-to-face and face-to-back, where the ‘‘face’’ 

refers to the side that supports the metallization (i.e. logical circuits), and the ‘‘back’’ 

refers to the side with the silicon substrate [6]. Both of these stacking methods will be 

analyzed in depth in Chapter V, where we will study various 3DIC architectural 

considerations. For face-to-face bonding, a copper–copper bonding process is used to 

construct interdie connections, also called die-to-die (d2d) or face-to-face vias. The 

process achieves face-to-face vias by depositing the copper material of half of the via on 

each die, and then bonding the two dies together, utilizing a thermocompression process. 
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Finally, a chemical–mechanical polishing (CMP) process thins the back of one die to 

reduce the thickness of the bulk silicon. Face-to-face vias are smaller than the through-

silicon vias required for face-to-back bonding [14]. On the other hand, for 3DICs 

composed of more than two active layers, face-to-back bonding is the only option. 

 

Figure 5. Bonding orientation (From [6]). This figure shows face-to-face and face-
to-back bonding. Depending on the position of the metal layers of the upper die 

relative to those of the lower die, the bonding process is referred to as either face-
to-face, where the metal layers of the layers face each other, or face-to-back, where 

the bulk silicon of the upper die faces the metal layers of the lower die.  

2. Advantages of 3DIC Technology 

3DIC technology offers several potential advantages. Industry is pursuing 3D 

integration to increase the number of transistors on a chip as an alternative to the costly 

retooling required to make transistors that are smaller than 22nm [14]. Moreover, much 

like tall skyscrapers allow more activity within the same footprint, 3DIC technology 

increases the number of transistors that can be placed on the same footprint by adding 

transistors vertically.  

Another advantage of 3D integration is flexibility and modularity, because a high-

performance processor die can be optionally joined with application-specific dies that 

perform custom functions such as acceleration.  

Another advantage of 3DIC technology is that it facilitates the combination of 

dissimilar technology, e.g., dies fabricated separately using different processes that are 

optimized for the needs of the individual die and later joined into a single, unified stack. 

This has the potential to reduce costs by reusing dies that have been designed, tested, and 

Face-to-face bonding                 Face-to-back bonding

At device layer, d2d size is small to 
minimize impact layout

At bonding interface, d2d size must 
be large enough for proper 
alignment
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certified, provided that the necessary modifications to support 3D stacking have been 

made. Another benefit of 3D integration is that we can optionally join a die with a die that 

implements custom security functions, enhancing the security of a system that requires 

them. For instance, a crypto coprocessor can be manufactured in a separate layer called 

the control plane, where all crypto operations will execute. This control plane is separate 

from the computational plane that utilizes the crypto coprocessor.  

We summarize the benefits of 3DIC technology as follows [11]: 1) it offers higher 

transistor density per footprint over conventional 2D layout and an increase in the number 

of transistors that can be used; 2) The reduction of the total wire length required for the 

interconnections leads to an enhancement of the performance; and 3) it has lower power 

requirements [16]. It has been shown [16] that the reduction of wire length resulting from 

the use of three-dimensional architectures is proportional to a factor of the square root of 

the number of layers used. Assuming that we have a four-layer 3DIC, we can achieve on 

average  times shorter wiring length as depicted in Figure 6. 

 

Figure 6. Reduction of length wiring by a factor of the square root of the number of 
layers in three dimensions (After [11]). For a 3DIC with four layers, the average 

reduction of the length wiring is a factor of two.  

4 2=
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3. Challenges of 3D IC technology 

3DIC technology has several clear drawbacks, just as skyscrapers do [15]. 1) 

Thermal effects and the need to cool a stack of dies present a challenge. New cooling 

methods are needed to prevent or eliminate thermal problems. 2) Yield: Each additional 

manufacturing step adds a risk for potential defects. In order for 3DICs to be reliable and 

commercially viable, these defects must be avoided or repaired, and 3DICs must be tested 

and certified to operate properly. 3) New testing methods should be implemented. The 

implementation of the requisite test tools and procedures is occurring in parallel with the 

implementation of 3DIC technology. Current testing methods and tools for conventional 

2DICs are not compatible with 3DIC technology. This impacts research, manufacturing 

time, certification, and fabrication cost. 4) Heterogeneous integration supply chain: In 

heterogeneously integrated systems, the delay of one part from one 3DIC manufacturer 

delays the delivery of the whole product, because the manufacturing process depends on 

all participating parties. 

C. COPROCESSORS 

Coprocessors are application-specific integrated circuits that complement and 

accelerate a main processor, typically a general-purpose CPU. CPUs and their 

coprocessors can be connected in a variety of ways, from separate chips connected at the 

circuit-board level to separate cores on the same chip connected by on-chip buses, 

networks, or direct connections. Coprocessors can be upgraded without replacing the 

whole system (unless, of course, they reside on the same die). Furthermore, since they are 

application-specific, they have the potential of having much higher throughput and much 

lower power consumption than a general-purpose processor for certain application 

workloads that can benefit from the acceleration they offer. 

When designing coprocessors, several aspects have to be considered: 

• Onto what kind of slot or interface the device will be attached 

• How many pins the device and slot have; this will impose limitations on the 

speed of the communication 

• How the clock signal will be delivered to the device and whether the device 

will operate in sync with the main processor 
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• How the device will communicate with the main processor and other devices 

(microprocessor interface) 

What are the input/output signals (are buffers needed?) 

D. DATA COMPRESSION 

1. Compression 

 Compression is basically a redundancy elimination method, so the first step is to 

find the redundancy and its cause. David Salomon in [8] presents some simple 

explanations of data compression, as discussed below. 

The simple compression example is the use of variable-length codes to represent 

symbols. As an example, characters can be represented by ASCII or Unicode. Both are 

fixed-length codes, but we know that in English the most common letters are E, T, and A, 

while J, Q, and Z are least common. Therefore, a basic compression method is just to 

choose the characters that appear more frequently and represent them with fewer bits, 

instead of representing all characters with the same number of bits, as presented in Figure 

7. 

 

Figure 7. Here we present the difference in length of using a fixed-length code 
versus a variable-length code to represent a simple text message. In the first row, 

we have a text message as it appears to the user; in the second row, the way it 
appears to the computer if using ASCII fixed-length representation; in the third row 

we represent it using an arbitrary fixed-length code specific to a four-character 
alphabet, to reduce the string length; and in the last row, we replace the character 
that appears most (L in this case) by the fewest possible number of bits (0 in this 
case). Then we look for the second most-used character. Since all the remaining 

characters appear only once, we just assign them a different code. 
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 The same approach can be used to compress images, which are made of pixels. To 

represent all recognizable colors, we need a large range of possible color values for each 

pixel, so we can use 24 bits to represent one pixel. On the other hand, black and white or 

grayscale pixels can be represented using a smaller variable-length code and assigning 

fewer bits to the most-used colors. This reduces the overall size of the image file. This can 

be seen in Figure 8. 

 
Figure 8. We present the difference in length using a fixed-length code or variable-

length code to represent a grayscale image. 

 The drawback of this method is that the system has to be able to recognize each 

character or pixel representation, which is called uniquely decodable or uniquely 

decipherable (UD), as explained by David Salomon in [8]: “Once the original data 

symbols are replaced with variable-length codes, the result (the compressed file) is a long 

string of bits with no separators between the codes of consecutive symbols. The decoder 

(decompressor) should be able to read this string and break it up unambiguously into 
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individual codes. We say that such codes have to be uniquely decodable or uniquely 

decipherable (UD).” This separation can be done using a time delay between characters in 

the same symbol, and a different time delay between different symbols, or using a special 

character to indicate the end of one symbol, any time the code increases in complexity or 

size.  

 Now consider the previous image example, and suppose we have an image from 

an orange. It is likely that we will find a large sequence of orange pixels, so we can 

replace this sequence with just the first pixel followed by the number of times this pixel 

appears. This method is called run-length encoding and can be seen in Figure 9. 

 

Figure 9. Here we present the difference in the string length by using a run-length 
method to represent an image with repeated colors. 
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2. Dictionary methods 

 Dictionary compression methods rely on the principles described above. 

Dictionary compression, as its name suggests, inputs data and stores it in a special 

structure called a dictionary, outputting a pointer to its location (token). The pointer is 

smaller than the data stored to that location, so compression is achieved by substituting 

the original data with its pointer. David Salomon and Giovanni Motta in [9] describe 

dictionary methods as methods that “(…) do not use a statistical model, nor do they use 

variable length codes. Instead they select strings of symbols and encode each string as a 

token using a dictionary. The dictionary holds strings of symbols, and it may be static or 

dynamic (adaptive). The former is permanent, sometimes permitting the addition of 

strings but no deletions, whereas the latter holds strings previously found in the input 

stream, allowing for additions and deletions of strings as new input is being read.” During 

the whole compression process, the algorithm performs a search in the dictionary, looking 

for redundancy (a repeating string that was previously seen and stored in the dictionary) 

and outputs a pointer to the longest match (the string with the greatest number of equal 

characters). If no match is found, this string is stored as a new entry in the dictionary, and 

a pointer to its location is the output. Figure 10 shows a simple dictionary compression 

example and Figure 11 shows the decompression of the same string. Various dictionary-

based methods have been developed; the major difference between them is how they 

handle the process of storing to and searching the dictionary. 
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Figure 10. We present the dictionary method with just one match. At first it seems 
that no compression can be achieved, but as the dictionary fills up, more matches 
occur. The methods differ in the way they handle the filling process and how they 

manage the dictionary when it is full and more new data is found. 
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Figure 11. Using the compressed string from Figure 10, we present the decompression 
phase. We assume that the algorithm can figure out if the input data is compressed 
or not. If it’s not compressed, the data is output and written to the dictionary as is; 
otherwise the algorithm interprets it as a pointer and outputs the pointer’s content. 

a. Adaptive Dictionary 

We can specify each dictionary method and show the difference between 

them. In [9] David Salomon and Giovanni Motta show that “in general, an adaptive 

dictionary-based method is preferable. Such a method can start with an empty dictionary 

or with a small, default dictionary, add words to it as they are found in the input stream, 

and delete old words because a big dictionary slows down the search”. 

b. Sliding Window Dictionary 

Some methods use a sliding window over the previously seen inputs as a 

dictionary, and the token (output of compressed data) is the triple (offset from the actual 
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symbol into the sliding window, from right to left, the length of the repeating symbols 

from left to right, and next-input symbol). Figure 12 shows an example. 

 

Figure 12. We present a different implementation of a dictionary in a sliding window; 
this shows how algorithms vary based on the implementation of the same principles 
(After [9]). As an example of how to consider the method based on the kind of data 

we are compressing, this method compares the input string only to the sliding 
window, not the full data previously seen, so we assume our data will repeat 

sooner. 

c. Circular Queue Dictionary 

A circular queue is another implementation of the dictionary. Instead of 

having a sliding window, which has to shift its entire content on each input data, the 

circular queue is just a circular array, a linear array physically, that inputs data 

sequentially, but when the data reaches the last available position in the string, the pointer 

is redirected to the first position and data is overwritten. 
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d. Binary Tree Dictionary 

Another implementation of dictionaries uses a binary search tree sorted in 

lexicographical order. A binary search tree is defined in [9] as “… a binary tree where the 

left sub tree of every node A contains nodes smaller than A, and the right sub tree contains 

nodes greater than A,” where “smaller” means that the string appears first in the 

dictionary. 

The reason for this implementation is that the search process in a balanced 

binary search tree is faster, because the number of steps needed to find a node is the 

height of the tree, in this case log2 n (where n is the number of elements in the tree). 

3. Statistical Methods 

Prediction methods take advantage of the context in which data appears. After 

inputting a certain amount of data, the method (predictor) is able to guess (predict) the 

next input based on the context in which it appears, by means of statistical analysis. That 

is why the prediction method is a subset of all statistical methods. For example, we know 

from the English alphabet that TH is the most common digram, so after seeing a T we 

expect an H with high probability. In the same way, the predictor, after inputting a large 

amount of data, generates its own statistics, assign probabilities for the next symbol, 

based on context, and chooses the most probable one to output. Good predictors are able 

to correctly guess more than 90% of the output data.  

Prediction-based methods have a learning or heating phase in order to generate 

necessary statistics before being able to make good predictions. In figures 13 and 14, we 

show this learning process step-by-step. 
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Figure 13. Before presenting the overall compression process, we show the 
probability table (in percentage): the representation of an algorithm that, based in 
the previously seen symbol, having learned about the data (by copying to the table 
the previously seen symbol and actual following symbols and counting how many 
times they appear), can guess the most-probable next symbol. If the guess matches 
the actual symbol we have a hit, and the output is the smallest possible data (“1” in 
our example). If the guess doesn’t match the actual symbol, the algorithm outputs a 

miss symbol (“0” in our example), followed by the actual symbol. 
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Figure 14. Learning phase: Unlike the dictionary method, the prediction is slow to 

learn about data, and, as we can see, augments the output string during this phase, 
adding the miss symbol “0” plus the actual data. After this learning phase, the final 

compression is better in terms of compression ratio than the dictionary-based 
method. 
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0 H 0 E 0 L 0 L 0 O  
1001000 1000101 1001100 1001100 1001111  

 

MACHINE 
USER 

INITIAL PROBABILITIES

COMPARES THE PREDICTION
AND THE NEXT SYMBOL, IF
FALSE OUTPUT “0”+“SYMBOL”, IF
TRUE OUTPUT “1”

WRITES THE NEXT SYMBOL AFTER 
THE PREVIOUS SYMBOL AND
COMPUTES THE PROBABILITY OF 
NEXT SYMBOL AFTER PREVIOUS 
SYMBOL

“L” WAS SEEN BEFORE, BUT THE 
NEXT SYMBOL WAS ANOTHER “L” 
AND NOW ITS IS AN “O”, SO THE 
COMPARISON FAILS

PREVIOUSLY AFTER SEE A “L” THE 
PROBABILITY TO SEE ANOTHER “L” 
WAS 100%, BUT NOW THE 
PROBABILITY OF SYMBOLS 
FOLLOWING “L” ARE 50% OF 
ANOTHER “L” AND 50% OF AN “O”
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Figure 15. After the learning phase, suppose the string continues and after “HELLO” 

we see “HELL;” the table is still being updated with new probabilities, but now that 
the algorithm has enough knowledge about our data, more hits are generated. 

Therefore, the compression ratio increases, and just 11 bits are output from a 28-bit 
input, almost a 3:1 compression ratio. Note that the symbol “L” appears for the 

third time after another “L” and changes the probability of symbols after “L” from 
50% of ”L” and 50% of “O” to 66% of “L” and 33% of “O”. 

 In Figures 16 and 17 we present the decompression phase of the same string. 

 

 1001000 1000101 1001100 1001100 
null H E L L 

              
PROB  TABLE              

null 100 H              
H 100 E              
E 100 L              

L 50 L              
50 O              

O 100 null              
null 100 H              

 H == H             
              
   PROB  TABLE           
   null 100 H           
   H 100 E           
   E 100 L           
   

L 
50 L           

   50 O           
   O 100 null           
   null 100 H           
    E == E          
              
      PROB  TABLE        
      null 100 H        
      H 100 E        
      E 100 L        
      L 50 L        
      50 O        
      O 100 null        
      null 100 H        
       L == L       
              
         PROB   TABLE     
         null 100 H     
         H 100 E     
         E 100 L     
         

L 
50 L     

         50 O     
         O 100 null     
         null 100 H     
          L  AND  O == L   
             
            PROB   TABLE 
            null 100 H 
            H 100 E 
            E 100 L 
            L 66 L 
             33 O 
            O 100 null 
            null 100 H 
             

1 1 1 0 1001100 
 

MACHINE 
USER 

AFTER SEE A null, COMPARES THE 
PREDICTION “H” AND THE NEXT 
SYMBOL “H”, IF FALSE OUTPUT 
“0”+“SYMBOL”, IF TRUE OUTPUT 1”
LIKE H==H IN THIS CASE, 
OUTPUTS “1”

NEXT SYMBOL “H”  AFTER 
THE PREVIOUS SYMBOL null ALREADY 
EXISTS AND THE PROBABILITY STILL 
100%

THE PREDICTOR CAN’T PREDICT 
WHICH ONE TO CHOOSE BECAUSE 
BOTH HAVE THE SAME PROBABILITY, 
SO IT FAILS AND OUTPUT FALSE

PREVIOUSLY AFTER SEE A “L” THE 
PROBABILITY TO SEE ANOTHER “L” 
WAS 50%, BUT NOW AFTER SEE “L” 
AGAIN, THE PROBABILITY OF SYMBOLS 
FOLLOWING “L” ARE 66% OF  
ANOTHER “L”  AND 33% OF AN “O”
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Figure 16. The probability table is empty, and a new learning phase will start for 

decompressing the string. Every time the algorithm sees a “0,” it will output the 
data that follows and write the data into the table, calculating the appropriate 

probability. 

 

null 0 1001000 0 1000101 0 1001100 0 1001100 0 1001111 
null 0  H 0  E 0  L 0  L 0  O 

                
PROB  TABLE                

null null null                
 0 == MISS               
                
   PROB  TABLE             
   null 100 H             
   H null null             
    0 == MISS            
                
      PROB  TABLE          
      null 100 H          
      H 100 E          
      E null null          
       0 == MISS         
                
         PROB   TABLE       
         null 100 H       
         H 100 E       
         E 100 L       
         L null null       
          0 == MISS     
               
            PROB  TABLE    
            null 100 H    
            H 100 E    
            E 100 L    
            L 100 L    
             0 == MISS   
                
               PROB  TABLE 
               null 100 H 
               H 100 E 
               E 100 L 
               

L 
50 L 

               50 O 
               O 100 null 
                
1001000 1000101 1001100 1001100 1001111  

H E L L O  
 

MACHINE 
USER 

INITIAL PROBABILITIES

IF SEES A “0” OUTPUT THE 
DATA “AS IS”  EXCEPT THE 
INITIAL “MISS SYMBOL” 
AND WRITE IT  TO THE TABLE

COMPUTES THE PROBABILITY OF 
NEXT SYMBOL AFTER PREVIOUS 
SYMBOL AS DURING THE 
COMPRESSION PHASE

“L” WAS SEEN BEFORE, BUT THE 
NEXT SYMBOL WAS ANOTHER “L” 
AND NOW ITS IS AN “O”, SO WRITE
BOTH TO THE TABLE

PREVIOUSLY AFTER SEEING A “L” 
THE PROBABILITY TO SEE ANOTHER 
“L” WAS 100%, BUT NOW THE 
PROBABILITY OF SYMBOLS 
FOLLOWING “L” ARE 50% OF 
ANOTHER “L” AND 50% OF AN “O”
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Figure 17. Continuing the decompression after the learning phase: The table is still 

being updated with new probabilities, but now the algorithm has enough 
knowledge about our data to decompress a one-bit symbol with total precision. 

Note that to decompress the second “L,” if we had a hit before the algorithm could 
guess “L” or “O” because both had the same probability of 50%, from now on the 

algorithm will correctly predict “L” because “L” has greater probability (66% 
against 33%). 

 Other prediction-based methods compare the prediction with the original symbol 

and output the difference between them. Therefore, if the prediction is an exact match, the 

output is a “zero” representation; if they have a partial match, a “difference” 

representation is the output. It is usually smaller than the original data. David Solomon 

describes how this difference can compress data: “…the differences tend to be distributed 

according to the Laplace distribution, a well-known statistical distribution, and this fact 

helps in selecting the best variable-length codes for the differences” [8]. However, the 

 

null 1 1 1 0 1001100 
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null 100 H              
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            PROB   TABLE 
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            H 100 E 
            E 100 L 
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             33 O 
            O 100 null 
            null 100 H 
             
1001000 1000101 1001100 1001100 
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MACHINE 

AFTER SEE A “1” LOOK FOR THE 
PREVIOUS SYMBOL AND OUTPUT 
THE MOST PROBABLE PREDICTION 
FOR IT;  IN THIS CASE “1” LEADS TO 
THE PREVIOUS null, AND LOOKING 
THE PROBABILITIES FOR null WE 
CONCLUDE THE MOST PROBABLE 
FOLLOWING SYMBOL IS AN “H” WITH 
100% PROBABILITIE

POINTS TO THE NEXT SYMBOL TO BE 
READ FROM THE TABLE 

KEEP UPDATING THE PROBABILITY LIKE 
IN THE COMPRESSION PHASE, NEXT 
SYMBOL “L”  AFTER THE PREVIOUS 
SYMBOL “E” ALREADY EXISTS AND THE 
PROBABILITY STILL 100%

IF WE HAVE A HIT HERE BUT THE 
ALGORITHM  DOES NOT KNOW IF IT 
SHOULD CHOOSE “L” OR “O”

NEXT SYMBOL “L”  AFTER THE 
PREVIOUS SYMBOL “L” ALREADY 
EXISTS BUT NOW WE SAW “L” THREE 
TIMES AND “O” JUST ONCE, SO THE 
PROBABILITIES OF SYMBOLS 
FOLLOWING “L” ARE 66% OF  
ANOTHER “L”  AND 33% OF AN “O”
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table complexity increases with this method, because now we store the previous symbol, 

the next probable symbols, their probabilities, and a code for that symbol. 

a. Huffman Coding 

The Huffman algorithm assigns codes to symbols and replaces the original 

symbol by its respective code in the compressed string. Compression is achieved because 

the codes are variable in length, and the shorter codes (one bit is the smallest) are assigned 

to the most frequently used symbols. The longer codes are assigned to the least frequently 

used symbols.  

For frequently used symbols, the representation for each symbol, can be 

reduced to one bit. If we are using an eight-bit representation, this results in an 8:1 

compression ratio for the most frequent symbol, which increases the ratio for the overall 

string.  

The Huffman algorithm implements this code using a binary search tree as 

described in Figure 18. It presents the Huffman code implemented in a binary tree for the 

English alphabet using the frequency with which the letters appear in English text [9]. 

 

Figure 18. Huffman code for the 26-letter alphabet. The algorithm orders the symbols 
by their frequency in English text and allocates the positions in the tree with a 

smaller code assigned to the most frequent symbols. 
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The code has some restrictions: the smallest possible code has one bit, so if 

the alphabet has one-bit symbols (only two symbols, “0” and “1” in this case) like 

monochromatic images, we have to incorporate these symbols into a larger bit 

representation in order to represent additional characters, and then treat the combination 

as our alphabet [9]. 

b. Adaptive Huffman 

Huffman coding assumes that the frequency of symbols is known by the 

algorithm, which is not true for some kinds of data. Some texts may not obey the normal 

distribution of letters, so in many implementations, the algorithm has to read data twice, 

slowing down the process. The first pass is used to calculate frequencies and build the 

tree, then a second pass is used to compress the data. This is called adaptive Huffman 

code. The implementation of the UNIX “compact” program [9] uses adaptive Huffman 

codes, for example. 

The adaptive code starts with an empty tree and fills it as data is read and 

compressed. Each time a new symbol is read, the algorithm computes a new frequency for 

that symbol and updates the tree. This method works if the decompression algorithm 

starts with an empty tree also, and updates the tree in the same way the compression 

algorithm does, following the same principles as in our example of a statistical table. We 

can follow the explanation in [9]: “The first symbol being input is simply written on the 

output stream in its uncompressed form. The symbol is then added to the tree and a code 

assigned to it. The next time this symbol is encountered, its current code is written on the 

stream and its frequency incremented by one. Since this modifies the tree, it (the tree) is 

examined to see whether it is still a Huffman tree (best codes). If not, it is rearranged, 

which results in changing the codes. (…) The decompressor mirrors the same steps. When 

it reads the uncompressed form of a symbol, it adds it to the tree and assigns it a code. 

When it reads a compressed (variable-length) code, it scans the current tree to determine 

what symbol the code belongs to, and it increments the symbol’s frequency and 

rearranges the tree in the same way as the compressor.” 
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Huffman methods do not have the best compression ratios because they 

assign codes with integer numbers to represent frequencies that are, in fact, decimal 

numbers, as explained in [9]: “Information theory shows that a symbol with probability 

0.4 should ideally be assigned a 1.32-bit code, since −log2 0.4 ≈ 1.32. The Huffman 

method, however, normally assigns such a symbol a code of 1 or 2 bits,” so arithmetical 

methods were developed. 

c. Arithmetic Coding 

Arithmetical codes calculate a symbol’s frequency by counting how many 

times it appears in the string, representing the frequency with a more complex, yet more 

effective, code format. 

For a given string, after counting the number of occurrences of each 

symbol in the string, the algorithm calculates the probability by dividing its frequency by 

the string size (frequency / string size). The result is some number between “0” and “1” 

(0% and 100%). The algorithm defines three variables: “LOW”, “RANGE,” and “HIGH,” 

then divides the overall probability within this range [0, 1) among all symbols according 

to their probabilities. Figure 19 shows the base probabilities and the values of LOW, 

RANGE, and HIGH for each symbol. 

 

Figure 19. Base Table for Arithmetic coding of “HELLO.” The input string 
“HELLO” is read, and a probability is assigned to each symbol. Then LOW, 
RANGE, and HIGH values are calculated for each symbol, where RANGE = 

HIGH–LOW. Starting with symbol “H,” LOW=0, RANGE=0.2, and HIGH=0.2. 

LOW    0                      0.2                     0.4                                                0.8                 1   HIGH

RANGE           0.2                     0.2                                  0.4                                   0.2

H E L L O

.10 .10 .10 .10 .10 .10 .10 .10 .10 .10

H = 0.2 E = 0.2 L = 0.4 O = 0.2
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For symbol “E,” LOW=0.2, RANGE=0.2, and HIGH=0.4, and so on. 

The code then starts as [LOW, HIGH) = [0, 1), and the following formulas 

are applied for each character in turn. : 

• NewHigh:=OldLow+Range*HighRange(X); 

• NewLow:=OldLow+Range*LowRange(X); 

where Range=OldHigh−OldLow, and LowRange(X), HighRange(X) indicate the low and 

high limits of the range of new symbol X, respectively, from the base table. 

In our exemple: 

NewHigh:=OldLow+Range*HighRange(H) => NewHigh:=0+(1-0)*0.2(X) == 0.2 

NewLow:=OldLow+Range*LowRange(H) => NewLow:=0+(1-0)*0(X) == 0 

NewHigh, NewLow == [0, 0.2) 

 A good way to understand the process is to imagine that the new interval 

[0, 0.2) is divided among the four symbols of our alphabet using the same proportions as 

for the original interval [0, 1). The result is four subintervals [0, 0.04), [0.04, 0.08), [0.08, 

0.16), and [0.16, 0.2). When the next symbol “E” is input, the second of those 

subintervals, [0.04, 0.08), is selected, as shown in Figure 20, and again divided into four 

subintervals [2]. 

 

 

Figure 20. After the first interaction with the formulas for letter H, new probabilities 
are assigned to each symbol, inside the range from the previous interaction. The 
LOW, RANGE, and HIGH values are calculated again for each symbol. Starting 

NewLOW 0                      0,04                  0,08                                             0,16                    0,2  NewHIGH

RANGE                   0,04                   0,04                               0,08                                 0,04

H E L L O

.10 .10 .10 .10 .10 .10 .10 .10 .10 .10

H = 0.2 E = 0.2 L = 0.4 O = 0.2
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with symbol “H”, LOW=0, RANGE=0.04, and HIGH=0.04; for symbol “E”, 
LOW=0.04, RANGE= 0.04, and HIGH=0.08, and so on. 

 Using the formulas we get the same result:  

  NewHigh:=0+(0.2-0)*0.4(E) == 0.08 

  NewLow:=0+(0.2-0)*0.2(E) == 0.04 

  [0.04, 0.08) 

 This process is repeated until the last symbol is encoded: 

  NewHigh:=0.04+(0.08-0.04)*0.8(L) = 0.072 

  NewLow:=0.04+(0.08-0.04)*0.4(L) == 0.056 

  [0.056, 0.072) 

 

  NewHigh:=0.056+(0.072-0.056)*0.8(L) == 0.0688 

  NewLow:= 0.056+(0.072-0.056)*0.4(L) == 0.0624 

  [0.0624, 0.0688) 

 

  NewHigh:=0.0624+(0.0688-0.0624)*1(O) == 0.0688 

  NewLow:= 0.0624+(0.0688-0.0624)*0.8(O) == 0.06752 

  [0.06752, 0.0688) 

Then we get the last LOW (0.06752), and remove the integer part as the 

final code representation of this string (06752). 

To decompress we do the inverse: we get the code (06752), recognize that 

the original value was (0.06752), and read the code “0.06752,” which is inside the 

RANGE of “H” [0, 0.2). We then output “H” and apply the following formula [2] to 

eliminate the effect of symbol “H” from the code: 

• Code:=(Code-LowRange(X))/Range 

where Range is the width of the sub range of X. 

 Code:=(Code-LowRange(H))/Range =>Code:=( 0.06752-0.0)/0.2 == 0.3376 

Then we get the code (0.3376), recognize that “0.3376” is inside the 

RANGE of “E” [0.2, 0.4), output “E,” and apply the formula again to eliminate the effect 
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of symbol “E” from the code, and so on until the code achieves a value of “0,” meaning 

the end of the compressed string: 

 Code:=(Code-LowRange(E))/Range =>Code:=( 0.3376-0.2)/0.2 == 0.688 

 0.688 represents the range of “L” [0.4, 0.8), output “L” 

 

 Code:=(Code-LowRange(L))/Range =>Code:=( 0.688-0.4)/0.4 == 0.72 

 0.72 represents the range of “L” [0.4, 0.8), output “L” 

 

 Code:=(Code-LowRange(L))/Range =>Code:=( 0.72-0.4)/0.4 == 0.8 

 0.8 represents the range of “O” [0.8, 1), output “O” 

 

 Code:=(Code-LowRange(O))/Range =>Code:=( 0.8-0.8)/0.2 == 0 

 0 represents the end of the string 

 

d. Adaptive Arithmetic Coding 

Like the Huffman code, the arithmetical code needs a frequency table 

before it starts encoding the string. Applying the same principle as adaptive Huffman, it is 

easy to understand the principle behind adaptive arithmetic coding. 

The method starts with a 100% probability of seeing the first symbol and 

updates the probabilities as new symbols appear. In this algorithm, compression is made 

in two steps: an arithmetic-encoder step and a probability-calculation step. It reads the 

input stream and executes a normal arithmetic encoder. The change is that, after encoding, 

it updates the symbol probability table using the old counts, not the updated ones.  Only 

after the overall process completes is the symbol count updated for the next round. The 

importance of updating the symbol count only after encoding and calculating the 

probability is that it makes it possible for the decoder to perform the inverse operation. 

The decoder does not know which symbol will result from the operation and cannot 

search any table for its probability before the overall decoding process. So it first applies 

the mathematical formula, compares it to the frequency range, extracts the respective 
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symbol from it, and then, knowing what the symbol is, searches the probability table and 

updates the count for the next round.  

E. CRYPTOGRAPHY 

1. Definition of Cryptography, Basic Principles and Description of 
General Aspects Related to Cryptography. 

Throughout history, safe and secure communication has been essential. In 5 BC, 

the Spartans employed a cryptographic device to send and receive secret messages. This 

device was a cylinder called a scytale that was in the possession of both the sender and 

recipient of the message. Today, cryptography is needed to protect the Internet and a wide 

variety of network applications used in all aspects of human life. For example, the 

exchange of sensitive personal information such as credit-card numbers through the 

Internet is a common practice. Thus, protecting data and all related electronic systems is 

crucial, and cryptography plays a significant role.  

Cryptography is from the Greek word “kriptographia” (κρυπτογραφία), literally, 

“secret write” or the art of writing secrets. According to [18], the definition of 

cryptography is: “the study of mathematical techniques related to aspects of information 

security such as confidentiality, data integrity, entity authentication, and data origin 

authentication. Cryptography is not the only means of providing information security, but 

rather one set of techniques.” 

A secret method of writing is called a cipher [20], in which the cleartext, or 

plaintext, is transformed into ciphertext. This process is called encryption, while the 

reverse is decryption. A key is required to encrypt or decrypt. In symmetrical 

cryptography, the same key is used for both. In asymmetrical cryptography, different keys 

are used. The encryption / decryption process is depicted in Figure 21. Another essential 

cryptographic primitive is the cryptographic-hash function, which transforms a variable-

length input string into a fixed-length output digest. Cryptographic-hash functions must 

be one way, meaning that it is very hard to determine the input given the output, and 

collision-resistant, meaning that it is very hard to find two inputs that result in the same 

output. 
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Figure 21. Secret writing, the process by which plaintext is transformed into 
ciphertext (After [20]). Transforming plaintext to ciphertext is called encryption, 

while the reverse is called decryption. A key is required to encrypt or decrypt.  

2. Cryptographic Services 

Cryptography is essential to a variety of electronic platforms such as virtual 

private networks, electronic commerce, wireless phones, data communications, and smart 

cards. A well-defined and implemented cryptosystem should provide the following 

services [18]: 

• Confidentiality ensures the prevention of unauthorized data observation. 

Confidentiality can be achieved through encryption and decryption algorithms. 

• Data integrity prevents the unauthorized modification of data. A useful 

method of enforcing data integrity is cryptographical hash functions. 

• Authentication is the process that verifies the identity of a specific entity 

involved in a communication session. There are two kinds of authentication. Entity 

authentication focuses on the authentication process between the entities of a 

communication session; data-origin authentication is responsible for the authentication of 

plaintext ciphertext

encipher

decipher
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the origin (time, owner) of data transmitted and received during a communication session 

[19]. 

• Non-repudiation is a process that prevents an entity from denying that he 

sent data during a specific communication session or, in general, prevents the denial of 

the authenticity of data, mail, or digital signatures transmitted during a communication 

session. 

3. A Basic Scenario of Cryptographic Application 

In order to understand how cryptography applies to secure communication we 

present the following simple communication scenario [19], which is depicted in Figure 

22. Assume that there are two participants, Alice and Bob, and they intend to 

communicate. Also, a third party, Eve, is an eavesdropper. If Alice wants to send a 

message to Bob, she encrypts the plaintext using a cipher that she and Bob have agreed 

upon. While Eve may be aware of the encryption method, she does not know the key. 

Kerckhoff's principle states that a cryptosystem should be secure even if the design of the 

cipher is public. In order for Bob to decrypt the received message, he uses the decryption 

key. Eve might have the following goals: 

• Get and read that message. 

• Retrieve the key and thus decrypt all messages encrypted with that key. 

• Alter Alice’s message or replace it with another.  

• Masquerade as Alice and communicate with Bob, while Bob thinks he is 

communicating with Alice. 
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Figure 22. Fundamental Communication Scenario for Cryptography (After [19]). The 

two entities, Alice and Bob, want to communicate with each other. For Alice to 
send a message to Bob without Eve’s access, she uses an encryption key to encrypt 

her message (plaintext). Bob receives the encrypted message (ciphertext), and 
decrypts it with a decryption key. 

There are four types of attack [19] that Eve can implement. These attacks are 

based on the amount of information available to Eve for cryptanalysis. 

• Ciphertext only 

• Known plaintext, where she has both the ciphertext and corresponding 

plaintext. 

• Chosen plaintext, where she has temporary access to the encryption cipher, 

but cannot retrieve the key. However, she can encrypt a chosen plaintext 

and try to determine the key. 

• Chosen ciphertext, where she has temporary access to the decryption 

mechanism and tries to determine the key.  

AliceAlice AliceEncrypt AliceDecrypt AliceBob

AliceEve
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4. General Description of Cryptographic Algorithms (Symmetric, 
Asymmetric, Hash Functions)  

As stated in [20], a cryptographic algorithm, or cipher, is a mathematical function 

used for encryption and decryption. According to [22], cryptographic algorithms are 

divided into three main categories: private (symmetric) key encryption, public 

(asymmetric) key encryption, and hash functions. 

a. Symmetric, Private-Key Encryption 

  Symmetric-key cryptography is a class of algorithms that allows parties to 

communicate securely only when they share some prior secret, such as the secret key. 

Each user must trust the other not to reveal the key to a third party. The sender and the 

recipient can encrypt and decrypt a specific message using the same secret key. Figure 23 

depicts symmetric-key encryption. 

  There are many symmetric-key algorithms, including DES (Data 

Encryption Standard), Triple DES, and AES (Advanced Encryption Standard). In this 

thesis, the 128-bit AES algorithm, utilized by traditional 2D cryptographic coprocessors 

[HSSEC], is incorporated into our proposed 3DIC compression-crypto (data 

transformation) coprocessor. 
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Figure 23. Symmetric key encryption (After [19]). The two entities that want to 
establish a communication session have already exchange shared a common secret 

key. The sender encrypts the plaintext with the common secret key, and the 
receiver decrypts it with the common secret key that he has on his possession in 

order to access the received message (ciphertext). 

b. Stream and Block Ciphers 

Symmetric-key encryption is further divided into two categories [20]. The 

first category is the stream cipher or stream algorithm, where the encryption operates on 

plaintext bit by bit or sometimes byte by byte. The second category is the block cipher or 

block algorithm, where each block is a specific group of bits of plaintext data (64 or 128 

bits), which enciphers to a ciphertext of the same length. Block ciphers have five possible 

modes of operation: electronic codebook (ECB), cipher-block chaining (CBC), cipher 

feedback (CFB), output feedback (OFB), or counter (CTR). Table 1 summarizes the 

modes of operation of block ciphers. A detailed discussion of the electronic codebook 

AliceEncrypt AliceDecrypt
plaintext ciphertext

Secret
Key Secret

Key

Oringinal 
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(ECB) and cipher-block chaining (CBC) modes, which are going to be used for the AES-

128 encryption component of the proposed cryptographic coprocessor, will follow in 

Chapter IV. 

 

Mode  Description Typical Application 
Electronic Codebook (ECB) Each block of 64 plaintext bits 

is encoded independently 
using the same key. 

• Secure transmission of 
single values (e.g., an 
encryption key) 

Cipher Block Chaining (CBC) The input to the encryption 
algorithm is the XOR of the 
next 64 bits of plaintext and 
the preceding 64 bits of 
ciphertext. 

•General-purpose block 
oriented transmission 
• Authentication 

Cipher Feedback (CFB) Input is processed j bits at a 
time. The preceding ciphertext 
is used as input to the 
encryption algorithm to 
produce pseudorandom 
output, which is XORed with 
plaintext to produce the next 
unit of ciphertext. 

• General-purpose 
stream-oriented 
transmission 
• Authentication 

Output Feedback (OFB) Similar to CFB, except that the 
input to the encryption 
algorithms is the preceding 
DES output. 

• Stream-oriented 
transmission over noisy 
channel (e.g., satellite 
communication) 

Counter (CTR). Each block of plaintext is 
XORed with an encryption 
counter. The counter is 
incremented for each 
subsequent block. 

•General-purpose block 
oriented transmission 
• Useful for high-speed 
requirements 

Table 1.   Block Ciphers mode operation summary (From [23]). 

c. Public (Asymmetric) Key Encryption 

 Unlike symmetric cryptography, asymmetric cryptography uses a different 

key for encryption and decryption. Each user must have two keys, one private and one 

public. The keys are mathematically related and created with a key-generation algorithm. 

Both the sender and receiver will keep their secret key confidential and allow their public 

keys to be distributed. In order for the sender and receiver to communicate, the sender 

must encrypt the message with the receiver’s public key. The receiver decrypts the 

received message with his private key. The public-key encryption process is depicted in 

Figure 24. According to [22], asymmetrical algorithms are poorly suited for encrypting 
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large messages because they are relatively slow. However, these algorithms support 

authentication, integrity, and non-repudiation, and they allow parties who have never met 

to securely communicate. There are several asymmetric algorithms such as RSA, DH, 

Pohlig-Hellman, El Gamal, and ECC. Asymmetrical algorithms also support digital 

signatures, key transport, and key agreement.  

 

Figure 24. Asymmetric-key encryption (After [19]). Asymmetric cryptography uses a 
different key for encryption and decryption. Each entity (Alice and Bob) must have 

two keys, one private and one public. Both sender and receiver keep their secret 
key secret and allow their public keys to be distributed. In order for the sender and 

receiver to communicate, the sender (Alice) must encrypt the message with the 
receiver (Bob’s) public key. To decrypt the received message, the receiver must use 
his private key. The public and private keys of each entity are related but unequal. 

d. Hashing Functions 

  A cryptographic-hash function takes a variable-length input and produces a 

fixed-length output using a one-way mathematical function. More precisely, as described 

in [18], “a hash function h maps bit-strings of arbitrary finite length to strings of fixed 

length, e.g., n bits. For a domain D and range R with h: D→R and |D| > |R|, the function is 

many to one, which implies that the existence of collisions (pairs of inputs with identical 

output) is unavoidable.” The result is called a message digest, or hash code, hash-result, 

hash-value, or simply, hash. The output can be considered a fingerprint of the data. Using 

this primitive, the integrity of data can be enforced. It is feasible for any entity to 

reproduce the message digest from the same stream of data, but it is not feasible to create 

AliceAlice AliceEncrypt AliceDecrypt AliceBob
plaintext ciphertext

Bob’s public
Key

Bob’s private
Key
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a different stream of data that produces the same message digest [22], which would result 

in a hash collision.  

 Hash functions enhance data integrity by supporting digital signature 

schemes, where a message is typically hashed first, then the hash-value, as a 

representative of the message, is encrypted [22]. Hash functions do not provide 

confidentiality and non-repudiation [22]. There are many cryptographical hash 

algorithms, including SHA-1, SHA-2, SHA-128, SHA-256, SHA-512, MD-2, MD-4, and 

MD-5. SHA-1 is the most widely used of the existing SHA hash functions, and it is 

employed in several widely used security applications and protocols. A detailed 

discussion of SHA-1 and SHA-512 follows in Chapter IV. 
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III. COMPRESSION 

A. INTRODUCTION 

 Processor designers must balance several competing constraints. Compression is a 

useful technique for reducing power consumption and execution time, e.g., by ensuring 

that the most frequently fetched instructions have the shortest length in bits. In this 

chapter we present different algorithms and hardware architectures for compression. 

B. COMPRESSION 

 The main taxonomy for compression divides algorithms into lossy or lossless. 

Lossy compression works by throwing away information that does not substantially affect 

the message’s ability to be understood; but this method is unable to reconstruct the 

original data exactly. Lossless compression, on the other hand, does not discard any 

information; it is merely represented by fewer bits. Decompression restores the original 

data exactly. Both forms of compression have a wide range of applications such as 

communication and computing. 

 Another type is “cascaded compression,” where the data passes through different 

compression algorithms in series. This technique works well with lossless algorithms, but, 

with lossy algorithms, can magnify errors during decompression. 

 Video or audio compression can be performed using lossy compression algorithms 

since a small or even imperceptible loss fidelity can often be sacrificed for a substantial 

size reduction.  

 Compression performance is measured in terms of compression ratio, which is 

defined as the size of the output data divided by the size of the input data. A value smaller 

than one means that the compression yielded a size reduction. The inverse of the 

compression ratio is the compression factor. 

 In our system, we are proposing to send compressed execution traces from an 

untrusted computer to a trusted one, in order to reconstruct the machine’s state exactly for 

analysis. Therefore, we require a lossless compression scheme. 
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 Before describing algorithms suitable for our proposed system, we provide a brief 

survey of compression methods. 

C. COMPRESSION ALGORITHMS 

 Of the many compression algorithms, we focus on the methods preferred by 

industry (e.g., AHA and IBM) and research groups (e.g., dictionary and statistical).  

D. STRING COMPRESSION 

 Data can be compressed either symbol by symbol or one string at a time. Since 

symbols have different probabilities of being used, Huffman coding assigns a code to 

each symbol and compresses data symbol by symbol. Compressing strings of symbols 

achieves better compression ratios because a group of n individual symbols with different 

probabilities requires more bits per symbol to represent than assigning Huffman codes to 

the 2n strings (all possible permutations) formed by the individual symbols. Dictionary 

methods compress strings, which one reason they are used more often than Huffman is 

coding and its variants [9] 

E. DICTIONARY METHODS 

 Dictionary compression accepts data as input and stores it in a special structure 

called a dictionary, outputting a pointer to its location (i.e., a token). The pointer is 

smaller than the data stored to that location; therefore, substituting the original data with 

its pointer achieves compression. Chapter II described dictionary compression, and we 

now present a variety of algorithms that perform dictionary compression. 

1. Lempel Ziv 

 “Having one’s name attached to a scientific discovery, technique, or phenomenon 

is considered a special honor in science. Having one’s name associated with an entire 

field of science is even more so. This is what happened to Jacob Ziv and Abraham 

Lempel. In the late 1970s these two researchers developed the first methods, LZ77 and 

LZ78, for dictionary-based compression. Their ideas have been a source of inspiration to 

many researchers who generalized, improved, and combined them with RLE and 
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statistical methods to form many popular lossless compression methods for text, images, 

and audio” [9]. 

2. LZ77 

 Lempel and Ziv 77 [LZ77 also known as LZ1] is a dictionary method that uses a 

sliding window for search, and a look-ahead buffer, as presented in Chapter II. The look-

ahead buffer is divided into three parts: the offset (distance between the symbol being 

encoded and the same symbol previously seeing), the length of the matching string, and 

the next symbol to be read. The offset size is the log2 of the length of the search buffer, 

which may be a few thousand bytes long. Therefore, the offset size is about ten to twelve 

bits. The length part is the log2 of the length of the look-ahead buffer (L, which is on the 

order of tens of bytes) minus one (for the next symbol field): log2(L − 1), which results in 

a field a few bits long. The next symbol field is about 8 bits and depends on the size of the 

alphabet used. Therefore, the total size of the token is about 11 + 5 + 8 = 24 bits, and the 

encoder needs to encode a string with a size of at least 3 bytes (24 bits) at a time, in order 

to not produce a larger file than the original. 

 The most difficult part of the algorithm is the search. Every search implementation 

must balance between speed and memory size. “A binary search tree gives good 

performance for only modest memory requirements [24],” but “a hash table appears to be 

a contender [24],” because many hash tables are available for improving performance. 

3. LZR 

 LZR derives from the LZ77 method, but the lengths of buffers are unbounded [9]. 

It will search the entire space for the best match, and it incurs a memory overhead to store 

data, as well as a time overhead for searching this data structure. It manages the memory 

space by increasing the size of the buffers until no more space is available and 

maintaining them at that size, or by deleting the buffers and starting to fill the memory 

again.  

 To reduce the search time, LZR proposes the use of a suffix tree: instead of 

deleting nodes and recomposing the tree’s structure, just mark the nodes as deleted, and 

delete the tree if all nodes in a tree are marked as deleted. Another drawback of this 
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method is the size of the output, because of the unbounded buffers, which are reduced by 

encoding the output using a variable-length code that allows reduction of the output from 

order n to order 2log2 n.  

4. LZSS 

 Storer and Szymanski developed LZSS in 1982 [26]. LZSS is also a variant of 

LZ77 but with several improvements: the implementation of the look-ahead buffer in a 

circular queue; the implementation of the search buffer in a binary search tree; and the 

output token’s reduction to two fields instead of three (only the offset and the length are 

present). The LZ77 representation for “no match” is a token with the three fields (0, 0, 

next symbol); in LZSS a one-bit flag is set for every output. If no match is found, LZSS 

outputs the one-bit “miss” flag and the original uncompressed data. If a match is found, 

LZSS outputs a one-bit “hit” flag followed by the two-field token. “LZSS decoding is 

very fast and comparatively little memory is required for encoding and decoding” [26]. 

 LZSS also changed the size of the buffers to output a one-byte uncompressed 

ASCII, or a two-byte compressed token; the search buffer has two kilobytes (= 211), and 

the look-ahead buffer has 32 bytes (= 25). This results in an offset field of eleven bits and 

a length field of five bits, for a total of two bytes (remember that token fields are a 

representation of the actual data, so we need n bits to represent 2n bits of data). For the 

extra one-bit flag, they collect and output those flag bits eight at a time for the next eight 

items (uncompressed ASCII or tokens), for performance reasons. 

 A significant change that improves speed is the implementation of a binary search 

tree for the search buffer. This buffer has a fixed size: the tree grows until the maximum 

size is achieved and keeps the same number of nodes, changing only its shape, according 

to the deletion and insertion of nodes in different places, until the end of the compression, 

when the tree decreases in size until no more symbols are stored and the tree becomes 

empty.  
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The algorithm for LZSS is the following [26]: 

 while lookahead buffer not empty do 
  get a pointer (offset,length) to the longest match in the window for the  
  lookahead buffer 
 if length > p then 
  output the pointer (offset, length) 
  shift window length characters 
 else 
  output first character in lookahead buffer 
  shift window one character 

5. LZB 

 LZB, proposed in 1987, is an improvement over LZSS and changes the token’s 

representation. It adapts the size of the first field of the token (the offset) according to the 

actual size of the search buffer being represented. At the beginning of compression, if just 

two symbols are stored in the buffer, only one bit is needed to represent them with the 

token. The number of bits increases as the buffer is filled, and after 50% of the buffer is 

filled, the maximum number of bits is used. For the second field of the token (the length), 

the algorithm uses the Elias gamma code, a variable-length code, to represent small 

numbers with fewer bits. In this code, the length of the integer n is 1 + 2 |log2 n|, and it is 

ideal for cases where n appears in the input with probability 1/ (2n2). The Elias gamma 

code can represent small numbers with fewer bits than a fixed-size code. The example 

below, adapted from [9], summarizes this code. Figure 25 shows a graph of its 

performance. 

 For the number n=20, the encoding occurs as follows: 
1. Find the largest integer N such that 2N ≤ n < 2 N+1 and write n = 2N + L. 
  2N ≤ n < 2 N+1 => 16 < 20 < 32 => 24 < 20 < 25 => N=4 
  n = 2N + L => 20 = 24 + L => L=4 Notice that L is at most an N-bit 
integer. 
2.  Encode N in unary either as N zeros followed by a 1 or N ones followed by a zero. 
  N=4 = 00001 in unary (four 0s followed by 1) 
3.  Append L as an N-bit number to this representation of N. 

  L=4 = 0100 in N-bit binary, so 00001 append 0100 = 000010100 
4. n = 000010100 
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Figure 25. This graph shows the lengths of the Elias gamma code and the standard 
variable length binary (beta) code, comparing them and showing the advantage of 

Elias gamma codes for small numbers n (From [9]). 

6. GZIP 

 GZIP is one implementation of Deflate (a “public domain compression method 

based on a variation of LZ77 combined with Huffman codes” [9]), which was developed 

by Philip Katz and implemented in PKZIP, supporting the zip-file format and other 

variants. In GZIP, the token has two fields, as with the previous method: the offset, 

limited to 32K bytes, and the length, limited to 258 bytes. As before, if no match occurs, 

the uncompressed string is written to the output. 

 In contrast, Huffman codes are written for the token fields, using two tables 

because of the different sizes of the output fields: one for lengths (limited to 258 bytes) 

and uncompressed strings (bytes normally in the interval 0-255), and another for offsets 

(up to 32 Kbytes). When an offset/length is found, the algorithm searches the tables for its 

Huffman codes. 
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 The algorithm also can perform two searches and compare them in order to find 

the longest match in three different modes:  

1. The default mode (the longest-length match): the first match is compared with a 

predefined value. If the length is greater than this value, a second search is not 

done, and if it is smaller, a second search is done. 

2. If the user desires speed: a second match is not done, which comes at the expense 

of a poor compression ratio. 

3. If the user desires the best compression ratio: a second search is always done over 

the entire search buffer, at the expense of more time. 

 Another improvement is the practice of generating two different kinds of tables: a 

fixed table built into the encoder and decoder, used to speed up the process, which may 

not be optimal for compressing certain types of data; and a flexible table constructed from 

statistical data collected at runtime from the data being compressed. The disadvantage of 

this approach is that those tables have to be compressed together with the data in order to 

allow the algorithm to perform the decompression. These runtime-generated tables are 

Huffman encoded; therefore, along with the data, the output file has a Huffman table for 

decoding the two encoded tables. 

 Due to the importance of GZIP, other deflate variants, and this new table structure, 

we investigate more deeply how the fixed, built-in tables represent the data.  

 Length/uncompressed tables have pre-codes from 0 to 285, which may be 

followed by extra bits. From 0 to 255, the pre-codes are used to represent uncompressed 

literals; pre-code 256 is used to represent end of block; and pre-codes from 257 to 285 

represent lengths (figure 26a). Rather than forming the output string, they are used as 

references to the length-code table (figure 26b), which will convert them in the actual 

output-code bits. For the offset, a table with five-bit, fixed-length codes and extra bits are 

used to represent all 32,768 possible offsets (represented in decimal instead of binary in 

Figure 26c. 
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Figure 26. In the length pre-code table (a), codes from 257 to 285 are used to 
represent lengths; these pre-codes are used as references to the length-code table 
(b), which will convert them to the actual output-code bits. Table (c) shows the 
five-bit, fixed-length codes and extra bits used to represent all 32,768 possible 

offsets (After [9]). 

  
 

  

Pre-Code Extra 
bits Lengths  

Codes  
(in decimal) 

Extra 
bits Offset 

 257 0 3 
 

0 0 1 
258 0 4 

 
1 0 2 

259 0 5 
 

2 0 3 
260 0 6 

 
3 0 4 

261 0 7 
 

4 1 5,6 
262 0 8 

 
5 1 7,8 

263 0 9 
 

6 2 9–12 
264 0 10 

 
7 2 13–16 

265 1 11,12 
 

8 3 17–24 
266 1 13,14 

 
9 3 25–32 

267 1 15,16 
 

10 4 33–48 
268 1 17,18 

 
11 4 49–64 

269 2 19–22 
 

12 5 65–96 
270 2 23–26 

 
13 5 97–128 

271 2 27–30 
 

14 6 129–192 
272 2 31–34 

 
15 6 193–256 

273 3 35–42 
 

16 7 257–384 
274 3 43–50 

 
17 7 385–512 

275 3 51–58 
 

18 8 513–768 
276 3 59–66 

 
19 8 769–1024 

277 4 67–82 
 

20 9 1025–1536 
278 4 83–98 

 
21 9 1537–2048 

279 4 99–114 
 

22 10 2049–3072 
280 4 115–130 

 
23 10 3073–4096 

281 5 131–162 
 

24 11 4097–6144 
282 5 163–194 

 
25 11 6145–8192 

283 5 195–226 
 

26 12 8193–12288 
284 5 227–257 

 
27 12 12289–16384 

285 0 258 
 

28 13 16385–24576 

    
29 13 24577–32768 

         
  Pre-Code bits Codes (in binary) 
  0–143 8 00110000–10111111 
  144–255 9 110010000–111111111 
  256–279 7 0000000–0010111 
  280–287 8 11000000–11000111 
   

a) c)

b)

Length table Offset table

Length code table
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 The deflate search uses large buffers; therefore, instead of moving data, the 

algorithm moves a pointer to indicate where the search buffer ends and the look-ahead 

buffers start. The strings are hashed and stored in a hash table; the encoder then hashes the 

next string and compares the hashes, searching for matches. 

 Deflate and its variants such as GZIP are very important due to their performance, 

speed, and availability of free implementations: “deflate normally produces compression 

factors of 2.5 to 3 on text, slightly less for executable files, and somewhat more for 

images. Most important, even in the worst case, deflate expands the data by only 5 bytes 

per 32 Kb block. Also, free implementations to avoid patents are available” [9]. 

7. LZ78 

 LZ78 does not use any buffer or sliding window; instead, it uses all assigned 

memory to store previously seen strings in a dictionary structure. It starts with an empty 

dictionary and reads the first symbol, a one-symbol string. As LZ78 executes, the current 

symbol is read and the dictionary is searched for a match. If a match is found, LZ78 reads 

the next symbol, concatenates it with the previous, and tries to find a two-symbol match 

in the dictionary. This process continues until a new concatenated symbol causes a miss 

during the search. The algorithm then outputs a pointer to the longest match (the first field 

in the token), outputs the symbol that caused the miss (the second field in the token), and 

stores the newly formed string in the dictionary. “LZ78 and arithmetic codes outperform 

LZ77 in the compression achieved, and the encoding speed” [26]. 

 Dictionary sizes can vary: a long dictionary can store more strings, but the 

pointers are bigger and the search process longer. Dictionaries are implemented as a tree 

(one that is not a binary tree); each new symbol added to a string is appended to the tree 

as a child of the last string’s value, as shown in Figure 27. 
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Figure 27. Implementation of the LZ78 tree (From [9]). Each new symbol is 
appended to the tree as a child of the string to which it belongs. For example, in the 
new string silo, the algorithm matches sil, outputs (1, o) (a pointer to the beginning 

of the string, new value), and o is appended as a child of 13-l.  

8. LZW 

 LZW, published in 1984, is a variant of LZ78, in which the second field of the 

token is omitted. It outputs just the pointer to a dictionary location. For a normal 8-bit 

alphabet, the dictionary is preloaded with all 256 one-symbol strings; therefore, a match is 

guaranteed for the first input symbol, eliminating the need for the first (0, symbol) “miss” 

token. The next symbols to be appended to these one-symbol strings are inserted at 

positions above 257. The dictionary is implemented as a tree similar to the LZ78 

algorithm, but instead of appending the new symbols as children of the strings, they are 

concatenated with the previous symbol or string. This new string is written to a location 

determined by its hash value along with its parent’s address. The values stored at this 

location are the new portion of the string and the address of its parent. 

 The decoder works in the opposite manner; it takes the same dictionary of one-

symbol strings, plus the output tokens, and reads the content of each token’s location. At 

the beginning of the decompression phase, the first tokens correspond to one-symbol 

strings. After input, the first token the decoder reads the next symbol and concatenates it 

with those one-symbol strings, resulting in a two-symbol string. The decoder stores this 

string at a location pointed to by the hash value of this new two-symbol string and writes 

26- o

27
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the actual one-symbol string’s location as its parent. Figure 28 shows the encoding 

process and Figure 29 shows decompression. The problem, not shown in the figures, is 

that the decoder decodes the string in reverse order, using a stack to store the string and 

pop the values for the output at the end of the process in the right order. LZW is slower 

because just one character is appended at a time. 

symbol 

new 

string  preloaded dictionary blank dictionary  token 

     0 … 101 … 104 … 108 … 111 257 258 259 260 261 262    

h he  null … e … h … l … o 104,e            104 

e el  null … e … h … l … o 104,e 101.l          101 

l ll  null … e … h … l … o 104,e 101.l 108,l        108 

l lo  null … e … h … l … o 104,e 101.l 108,l 108,o      108 

o oh  null … e … h … l … o 104,e 101.l 108,l 108,o 111,h    111 

h he*  null … e … h … l … o 104,e 101.l 108,l 108,o 111,h    257 

e hel  null … e … h … l … o 104,e 101.l 108,l 108,o 111,h 257,l    

l ll*  null … e … h … l … o 104,e 101.l 108,l 108,o 111,h 257,l  259 

l l  null … e … h … l … o         

 

Figure 28. LZW Encoder. The string hellohell is read: the first symbol h is preloaded 
into the dictionary, resulting in a match. The next symbol is e, and the encoder tries 
to find a match for the concatenation he (the longest match) but fails; therefore, it 

outputs the address for h. Since the concatenated string he is a new string, the 
encoder also stores this string at a new address (257) provided by a hash function; 
the values stored are its parent’s location (h=104) and the new value added (e in 

this case). The algorithm always tries to find the longest match; therefore, when the 
algorithm inputs the second h, it also inputs the second e as before and tries to find 

a match for he. Now that he is stored, the algorithm also tries the three-symbol 
string hel but fails to find a match. Therefore, after failing to match order three, the 

algorithm returns to order two and outputs this location (257). 
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token  preloaded dictionary  symbol new  blank dictionary  symbol 

  0 … 101 … 104 … 108 … 111     257 258 259 260 261 262   

104  null … e … h … l … o  h           

101  null … e … h … l … o  e he  104,e        

108  null … e … h … l … o  l el  104,e 101.l       

108  null … e … h … l … o  l ll  104,e 101.l 108,l      

111  null … e … h … l … o  o lo  104,e 101.l 108,l 108,o     

257  null … e … h … l … o     104,e 101.l 108,l 108,o 111,h   he 

259  null … e … h … l … o   hel  104,e 101.l 108,l 108,o 111,h 257,l  ll 

Figure 29. LZW Decoder. The first token (104) is read, and the output of this address 
(h) is the first symbol. The process continues with the next token (101), which 
results in a new symbol (e), but now it also stores the concatenation (he) of the 

previous two symbols in the dictionary (257). Like the encoder, when the decoder 
reads the token 257, the dictionary already contains its value: (104, e) -> (h, e) -> 

he. The output is the concatenation of the two-symbol columns. 

9. LZC (UNIX Compress) 

 LZC is a variant of LZW, but with a different dictionary implementation. It starts 

with a size of 512 entries, with the first 256 already filled as with LZW, and 9-bit pointers 

to those 512 locations. When the dictionary is filled up, it doubles in size, using 10 bits to 

represent the 1024 locations and so on, until the limit is reached. The limit can be set by 

the user, up to 16-bit pointers, the default being the 16-bit pointer. When the limit is 

reached, the dictionary becomes static, and the algorithm starts monitoring the 

compression ratio. If the ratio drops below the threshold value, it erases the dictionary and 

starts the filling process again. The decoder will detect the special symbol for this erase 

process, and will also erase the dictionary and start filling it again. 

10. LZT 

 LZT is an improvement over LZC; the difference is the way it handles a full 

dictionary. The LZT algorithm stores a dictionary and a linked list of keys sorted by the 

number of times they are used. When the dictionary becomes full the algorithm deletes 

the least-recently-used (LRU) key and its reference in the dictionary.  
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This represents an improvement over LZC because when LCZ deletes the entire 

dictionary, its performance immediately drops, and in LZT, with just part of the 

dictionary deleted, the performance becomes more consistent. The downside is that LZT 

is slower because of this new structure of linked lists of keys. 

11. LZMW 

 LZMW, published in 1985, is a variant of the LZW algorithm, with a difference in 

the dictionary implementation. The LZMW algorithm, like LZT, deletes the least-

recently-used (LRU) dictionary entries, and it also must keep track of the dictionary used 

in an additional structure. The major difference of this method is that, unlike LZW, the 

dictionary can grow by more than one symbol at a time. Instead of having one symbol 

added to the dictionary and a second one pointing to it, both can be stored in the same 

dictionary location, meaning the algorithm adapts faster to the input data. However, this 

also introduces some problems: during the dictionary search, suppose that the dictionary 

already has strings aaaa and aaaaaaaa. During the search, the algorithm must go until the 

eighth symbol of the string aaaaaaab to realize that it is necessary to choose the shorter 

phrase aaaa [9]. 

12. LZFG 

 LZFG is a mix between LZ77 and LZ78; it outputs a mix of literals and tokens. If 

the output is not compressed, it outputs the “code for literal,” followed by the size of this 

literal. If the output is found, it outputs the “code for token,” the offset from the 

previously seen string to the first symbol of the compressed string, and the number of 

symbols to input. Figure 30 shows an example. 
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Figure 30. The compression of string hellohell is shown. For the first three symbols h, 
e, and l, there is no match, so they are output as literals. For the fourth symbol, l, 

there is a match returning one position and reading one symbol, so it is output as a 
(token, 1, 1). When the next tokens count back for a match, all previous symbols 

are included in the count, even the symbols represented by previous tokens. 

13. ALDC 

 ALDC is an LZSS-based method patented by IBM and used in commercial IBM 

and AHA compressor coprocessors. The dictionary is filled during compression in the 

same way as is done during decompression using the input data. Therefore, like the other 

methods, it is not necessary to include the dictionary in the compressed data, but it has to 

be reset before each new data file is input.  

 Data is stored sequentially to the dictionary from location zero to the maximum 

available size, which can range from 512 bytes to 1024 and 2048 bytes. The increase in 

compression ratio is only 3% for each size upgrade; therefore, 512 bytes has the best 

cost/benefit configuration. The algorithm processrs data one byte at a time, and when the 

dictionary is full, the oldest data is replaced. The output for a hit is a one-bit flag to 

identify the hit, and a two-field token, the byte count (size), and the history location 

(address). If the string is not already stored in the dictionary, the output is a miss bit plus 

the literal (original data). ALDC uses a non-adaptive coding scheme to arrange the output. 

The data address is encoded using fixed-size binary, and the length is a quasi-logarithm 

code from two to twelve bits, for a total of 286 values, with the last sixteen values used 

for control and the last value defined as the end of compressed stream.  

hello hell =>  (literal 3)  h e  l  (token 1,1)  (literal 1)  o  (token 5,3) (token 1,1)

3                                             1

back 1 to ‘l’ 
read 1 ‘l’

back 1 to ‘l’ 
read 1 ‘l’

back 5 to h 
o,l,l,e,h
read 3 
‘ h  e l ’

hello hell =>  (literal 3)hel(token 1,1)(literal 1)o(token 5,3)(token 1,1)
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The 270 previous codes are for output lengths and can range from two to 271 bytes (the 

one-byte string is not considered since there is no compression). 

14. Dictionary Summary 

 The difference between these algorithms is the way they handle the dictionary 

write and search process; when a match is found, a token with its position in the 

dictionary is output. If the token has fewer bits than the data, then compression is 

achieved. 

F. STATISTICAL METHODS 

 Statistical compression inputs data and outputs a variable-length code with short 

codes assigned to most used symbols, based on a statistical table. The code is smaller than 

the data it represents; therefore, compression is achieved by substituting the original data 

with its code. Statistical compression was introduced in Chapter II, and we now present 

some statistical compression algorithms. 

1. Prediction 

 Prediction is a method in which the algorithm tries to predict the next symbol 

based on the context of data. Prediction-based compression algorithms can be divided as 

follows. 

1. Statistical model: the algorithm counts the times a symbol appears in the input 

data and assigns probabilities based on this count. For example, if symbol s was 

seen three times in a ten-symbol data stream, its probability is 3/10. 

2. Context-based statistical model: the algorithm does not count the times a symbol 

appears, but rather how many times it appears after a string (context) was seen. 

3. Static-context-based statistical model: the string (context) that precedes the actual 

symbol is fixed. The algorithm has preloaded bigrams (or trigrams) of the alphabet 

used, but everything else stays the same. 

4. Adaptive, context-based, statistical model: the context string is variable in length. 

An order N algorithm starts storing and comparing strings with length N and 

decrements the length by one symbol if no match is found, until the algorithm 
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reduces to order 0, meaning that just the actual symbol, without any preceding 

context string, is seen. If this symbol was not seen before, the algorithm assigns a 

probability to this symbol and stores it. 

 Some prediction methods use statistical data to guess the next input and compare 

the guess with the actual symbol. If they match, a hit symbol is output; otherwise, a miss 

symbol plus the original data is output, as explained in Chapter II. Other methods like 

PPM (explained below) use this statistical data with an arithmetic encoder. 

2. PPM 

 Prediction with partial-string matching (PPM) of order N is an algorithm that uses 

a set of N+1 Markov predictors [3]. PPM computes the probability of a symbol and sends 

this symbol to an adaptive arithmetic encoder to be encoded with the following 

probability: the length of the encoded data in bits = −log2 (Probability). If symbol S was 

seen previously with probability ½, its encoded length is: −log2 (1/2) = 1 bit.  

 The algorithm reads a symbol S and searches the order N context (the length N 

string seen before S). If the order N string was seen before, followed by the symbol S, a 

probability P of this occurrence exists. S is sent to the encoder to be encoded with 

probability P, and the probability is then updated to compute this new occurrence. 

Otherwise, if no string that precedes S was found, the algorithm reduces to order N-1, and 

a new search is performed. The process continues until a string matches or it reduces to 

order 0, when a search is performed for S itself, without any context. If no match is found, 

it switches to an order known as order -1: S is stored to the probability table and encoded 

with probability 1. [should there be a period instead of colon after -1?] 

 To keep the decoder consistent with the encoder, the algorithm needs to add a flag 

each time the order of the context is reduced. This is accomplished using an “escape” 

symbol, which is written to the output each time the order is changed. If the decoder 

recognizes the escape symbol, it switches to the same order; the arithmetic encoder also 

encodes the escape symbol with its probability. The worst case occurs when no match is 

found: the encoder reduces to order -1, outputting N+1 escape code along with the 

original data (arithmetically encoded with probability 1, the size of the alphabet). 



 59 

3. PPMA 

 This method differs from PPM in the way it encodes the escape symbol. Instead of 

just sending it to the arithmetic encoder, it fixes the escape symbol’s probability at 1/ 

(N+1), which is equivalent to assigning it the same count of 1 every time. Also, the 

probability of the escape symbol is not computed together with the data probability. 

4. PPMB 

 The main idea of PPMB is to store only contexts that appear more than one time; 

therefore, PPMB only updates the symbol probabilities after encountering the same 

symbol twice. PPMB accomplishes this by subtracting 1 from the symbol count.  

5. PPMC 

 PPMC keeps track of all comparisons made during a search; all symbols that are 

seen following the order N string are excluded from a new search if the algorithm shifts to 

order N-1 (i.e., eliminates repeating symbols in lower orders). This makes sense because 

if the eliminated symbol were the searched symbol, it could be compressed in step N, and 

the algorithm wouldn’t be shifted to order N-1. The elimination of repeated symbols 

increases the probabilities of real candidates for a match, improving the compression 

ratio. For example, P=2/5 compresses to −log2 (2/5) = 1.32 bits (actually 2 bits). If one 

repeating symbol is eliminated, the probability changes to 2/4. The bit count is –log2 (2/4) 

= 1 bit. 

6. VPC3 

 VPC is the base algorithm used in TCgen (trace-compression generator), an 

automatically generated trace compressor, which employs “value predictors to bring out 

and amplify patterns in the traces so that conventional compressors can compress them 

more effectively” [33]. TCgen is a pre-compression stage for other compression methods. 

Based on several other hardware-compression proposals, we are convinced that a pre-

compression phase can effectively improve the trace-compression ratio and compression 

speed. 
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 The first method proposed was to use prediction to compress traces. VPC1 

compares an eight-byte input with a series of predicted values, using 37 different 

predictors. If at least one of the predicted values is correct, the algorithm outputs the 

address only for the correct predictor. If no predictor predicts the input data, a miss flag is 

output, together with the actual data. VPC2 uses gzip as a second-stage compressor, but 

it’s very slow during decompression. Therefore, the final version, VPC3, does not try to 

compress the trace; instead, it tries to output a stream that is optimized for a second stage 

algorithm that compresses it. VPC3 is a lossless, single-pass, fixed-memory algorithm, 

making it ideal for trace transformations.  

 VPC3 uses four predictors: a last n values predictor, a stride predictor, a finite-

context-method predictor, and a differential finite-context-method predictor. These four 

predictors “have been experimentally determined to result in a good balance between the 

speed and the compression rate of the algorithm on the load-value traces”[34]. The three 

traces used during the development of VPC3 are the PC and load values of every executed 

load instruction, the PC and target of all indirect branch instructions, and the PC and 

effective addresses of each executed store instruction, all from the SPECcpu2000 

benchmark suite [34]. The algorithm tables are defined as having the columns correspond 

to the type of predictor and the number of lines (L) equal to the quantity of predictions 

stored for each predictor type. The number of stored predictions (L1=s and L2=t in the 

following figures) under each type of predictor is limited by the available memory, and 

has to be the power of two. 

 In VPC3, the index of each table is encoded using a Huffman code to reduce the 

index length of the most-used predictions. If more than one predictor is correct, the 

algorithm chooses that with the smallest index. If no prediction is correct, the output is the 

index of a predictor that already exists and is the closest to the actual data, together with 

the difference between the dummy prediction and the actual data. Several other 

enhancements are made: no repeated value is stored in the tables (tables only store 

different values), the predictions are organized in a last-seen basis to explore locality 

principles, and the Huffman codes are biased at the beginning to assign the shortest codes 
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to the predictors with the lowest “learn time” (see Chapter II), based on previous analyses, 

like the differential finite-context method [34]. 

 We have to consider also that “the compression rate depends not only on how 

many of the trace entries are predictable but also on which predictor can predict them and 

when a prediction is made since the length of the Huffman codes is different for different 

predictors and changes over time” [34]. VPC3 requires 27MB of memory [38]. 

 The four predictors are described below: 

a. The last n values predictor LV[n]: predicts the next input data based on the n 

previously seen values. The last n previously seen values are stored into a FIFO 

queue, and when a new data is input, it is compared with all n stored values. 

Experimental analyses show that storing four values is enough for a good 

prediction, outperforming other configurations [35]. See Figure 31. 

 

 

Figure 31. LV[n] predictor with s lines (After [39]). 
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b. Stride predictor ST[n]: the prediction is performed as before, storing the n last-

seen values, but instead of storing the data itself, the predictor stores the last-seen 

value and the next n differences from it. To improve performance, a second 

difference is also stored in a different table, but it’s updated only if this value is 

seen twice [34]. See Figure 32. 

 

Figure 32. ST[n] predictor with s lines (After [39]). The first column is the last-seen 
value, and all others are differences from it. 

c. Finite-context-method predictor FCMx[n]: this predictor reads the last x symbols 

seen, stores them in a FIFO sliding window, and then stores the n values that 

follow x in a prediction table, using a hash function. Every time a new string is 

input, it is compared with the x values in the queue, and if they match, the next 

value is predicted as being the one stored in the table addressed by the hash value. 

The algorithm does not compare the input data with the x values in the first table. 

For space/speed reasons, it just takes the hash of the input value and searches the 

address pointed to by this hash in the second table; thus, there is no real need for 

the first table. The values in the second table are only updated if they have made 

incorrect predictions twice after a good prediction, requiring an additional 

structure. See Figure 33. 
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Figure 33. FCMx[n] predictor with L1 = s and L2 = t (After [39]). 

d. Differential finite-context-method-based predictor DFCMx[n]: this method is the 

same as the previous method, except that the stored predictors are differences from 

the last seen one. Using differences instead of values can improve the prediction 

accuracy by as much as 33% [36]. The hash function is responsible for part of the 

performance of this method, and any change in the hash function can improve its 

performance [37]. See Figure 34. 

 

Figure 34. DFCMx[n] predictor with L1 = s and L2 = t (After [39]). 
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7. TCgen 

TCgen, is a tool that automatically generates portable, customized, high-
performance trace compressors. All the user has to do is provide a 
description of the trace format and select one or more predictors to 
compress the fields in the trace records. TCgen translates this specification 
into C source code and optimizes it for the specified trace format and 
predictor algorithms[38].  

 TCgen uses VPC3 as its base algorithm; it transforms traces into highly 

compressible streams that are sent to a general-purpose compressor. The input data is 

divided into fields according to the trace specification; a field can be the program counter, 

the memory address, the instruction counter, etc. Each field is input and compared with a 

set of predictors; if at least one predictor is correct, the address of this predictor is output 

to a stream. Otherwise, if no predictor is correct, a miss flag is output to the same stream, 

and the original data is output to a different stream.  

 At the end of this pre-compression phase, we have the trace file divided into two 

streams: a pre-compressed stream, composed of the address of good predictors plus the 

miss flags for the non-predicted values, and an uncompressed stream, composed of the 

miss-predicted values, which is searched during decompression when the miss flag 

appears in the pre-compressed stream. Both streams are further compressed with a 

general-purpose compression algorithm like GZIP.  

 The predictors are stored in tables addressed by an index, which is a modular 

function of a predefined field (ID field) and the number of lines in the table (ID mod s). 

The ID is computed from one specific index of one field in the algorithm. This field 

(pointed to by the user as the ID field) functions as a reference for the other predictors, 

but does not have a reference for itself. Therefore, the field defined as the ID field must 

have only one line in its prediction table (L1=1) and must be carefully chosen.  

 To generate the C code for this process, the user navigates to the following 

website: http://www.csl.cornell.edu/~burtscher/research/TCgen/ and types the trace 

specifications: the header length, if there is a header; the lengths of the fields in bits; the 

types of predictors to be used, and the predictor specifications (the ID field and the 

compressor to be used on the second phase), all following the grammar below: 
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TCgen Trace Specification; 
 
size-Bit Header; 
 
size-Bit Field 1 = {L1 = s, L2 = t: LV[n], ST[n], FCMx[n], FCMx[n]}; 
. 
size-Bit Field .. = {L1 = s, L2 = t: LV[n], ST[n], FCMx[n], FCMx[n]}; 
 
ID = Field ..;  the L1 in this field has to be 1 
 
Compressor = ‘general purpose compressor’; 
Decompressor = ‘general purpose decompressor’;  
 
 When specifying the traces, the user must provide an e-mail address, and the 

generated C code is sent to the user, who saves and compiles it. Other usage details can be 

found in [39]. 

G. FURTHER DISCUSSION 

1. Combining 

 Dictionary methods compress strings of symbols (helping compression) but ignore 

the context (hindering compression), while prediction methods have a probability memory 

(helping compression) but compress one symbol at a time (slowing compression). 

Therefore, a hybrid method that combines the advantages of both approaches is needed. 

Such a method exists: dictionaries that use some context and probability when they store, 

for example, the last-seen value, or search the dictionary by some order, like LZW, LZT 

or LZMW. 

2. Data-Compression Patents 

 Having presented several compression algorithms, and before we proceed to 

implementations, we discuss patents, since most implementations of these algorithms are 

proprietary. David Salomon says: “It is generally agreed that an invention or a process is 

patentable but a mathematical concept, calculation, or proof is not. An algorithm seems to 

be an abstract mathematical concept that should not be patentable. However, once the 

algorithm is implemented in software (or in firmware) it may not be possible to separate 

the algorithm from its implementation. Once the implementation is used in a new product 
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(i.e., an invention), that product—including the implementation (software or firmware) 

and the algorithm behind it—may be patentable [9]. ” 

 From the presented algorithms, GZIP is “free from patent claims, is faster, and 

provides superior compression [9],” is a good method for future implementations, and is 

used by AHA (AHA products group of Comtech EF Data Corporation) in its data-

compression hardware. 

3. Trace Compression 

 The primary motivating application of our proposed 3D data-ransformation 

processor is to collect, compress, encrypt, and transmit traces for analysis of program 

behavior for processor design and security research. The kind of trace to collect is a 

crucial parameter of the design because it will guide the choice of algorithm: the trace has 

to be complete enough to represent the processor’s behavior and concise enough to allow 

good compression. Jones and Zorn present guidelines for the format of traces [43]: 

 1. Expressiveness: “The trace format must be able to express enough information 

that the resulting traces can be used to make research contributions in the field” [43]. 

 2. Compactness: “Compact encodings allow larger, more representative traces to 

be created and shared” [43]. 

 3. Flexibility: “Perhaps the most important goal is to design with the 

understanding that additional information (and potentially entirely new formats) will be 

needed” [43]. 

 Traces can record different information depending on the objectives of their 

collection and analysis. “For example, control flow analysis needs only a trace of 

executed basic blocks or paths. Cache studies require address traces, and more complex 

processor simulations need instruction words as well. Branch predictors can be evaluated 

using traces with only branch-relevant information, such as branch and target addresses, 

and branch outcome, and ALU unit simulations require operand values. For example, the 

Dinero trace format record consists of the address of memory reference and the reference 

type—read, write, or instruction fetch, and BYU traces also include additional 

information, such as the size of the data transfer, processor ID, etc.”[32]. ATUM traces 

(address tracing using microcode) also include the process ID and encompass information 
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about system activity, such as mapping between physical and virtual memory at each 

translation look-aside buffer miss [44]. An IBS trace record contains the operation code 

and the user/kernel indicator [31]. 

 Our proposed system will collect traces using hardware probes (direct links) 

already built in the computation plane that provide the necessary access for the control 

plane and allocate space for buffers and dictionaries without increasing the area. In the 

following, we summarize some comments about hardware trace collection from [45].  

 The first consideration is the size of the buffers at the trace collection point; the 

sizes must be chosen carefully in order not to stall the compressor or slow it down. “If a 

long, continuous address trace is desired, then the buffer must either be very large or there 

must be some way to stall the host whenever the buffer becomes full. It is usually only 

possible to stall the processor,” which is not desirable in our case [45]. “If there is no way 

to stall the system, then several discontinuous address-trace samples can be acquired and 

concatenated together. In either case, the resulting trace exhibits a form of distortion that 

we call trace discontinuity” [45]. Special hardware has been built to avoid stalling the 

processor. Biomation Corporation built a trace-collection system in 1983 with 80 million 

trace-buffer entries. One way to reduce the size of the traces is to ignore some primary 

caches and TLB behavior; although they are important, “a trace of just cache misses is by 

no means worthless, (…) such a trace can still be used to simulate other cache 

configurations, albeit subject to certain restrictions” [45]. Those are approaches that 

reduce the efficiency of our architecture, and are not desirable. If the trace buffer is 

sufficiently large, we can capture complete sequences with “both user and kernel memory 

references, and free of most forms of trace distortion” [45]. Since some Intel processors 

have more than 10 MB cache, similar memory can be implemented in the same area on 

the control plane, allowing more than 130,000 entries of 64 bits, a figure that can be used 

as the size of the trace-compressor buffers. 

 Another important consideration is that the collected traces are difficult to 

interpret. “Hardware events such as cache misses, integer and floating-point-unit stalls, 

exceptions and interrupts all must be separated from run cycles to determine the actual 

type (read, write, execute) and size (word, half word, byte) of the memory references 
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made by a monitored processor” [45]. We may also provide some access to the OS data 

structures to emit markers or other clues to reverse-translate the physical addresses 

captured by the control plane to their matching virtual addresses, if the analyzer requires it 

[45]. 

 The number of processors is another issue. “Parallelism complicates tracing by 

increasing the volume of data that must be recorded, introducing uncertainty into the 

ordering of instruction and memory references between processes, and by allowing 

programs with indeterminacies that are affected by tracing” [46]. 

 The number of processes can also determine the trace formats, “Some systems can 

trace all processes running on a computer, sometimes even including the operating 

system.. The values of a multitasking trace depend on its intended application” [46]. 

 Fortunately, traces have similarities and properties that are not fully harnessed by 

general-purpose compression, but can be exploited by a pre-compression phase. 

“Combined instruction and data address traces can be compressed by recording only 

offsets from previous trace records of the same type, by linking data addresses to the 

corresponding dynamic basic blocks or loops, or by regenerating values using abstract 

execution or prediction” [29]; we summarize some of these techniques in the following. 

H. 2D COMPRESSION HARDWARE 

1. Parallel Dictionary LZW Plus Adaptive Huffman [27] 

 Figure 35 shows the proposed architecture, which uses two-stage compression 

hardware. In the first stage, the string is encoded using n parallel dictionaries, each with a 

different size word. The store and search processes are performed simultaneously in all 

dictionaries. If a match is found, the codeword for the match is output with its dictionary 

address. The dictionary of order one has the symbols of the alphabet preloaded (see LZW 

description). In the second stage, the output of phase one, which is a fixed-length string 

consisting of a match/miss codeword along with a data address, is encoded using an 

adaptive Huffman method. The idea is to use the statistical distribution of 

address/codeword to turn it into a variable length code using fewer bits. Instead of using a 

tree structure, it uses an ordered list to save search time and memory space. The order is 
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established by swapping one symbol with its adjacent symbol when it appears; therefore, 

most symbols encountered traverse the beginning of the list. 

 The hardware architecture of this technique is implemented as follows: 

The four dictionaries are implemented with the use of a 296-bit content addressable 

memory (CAM): (296 = 64 bits (B) x length 2 dictionary word (w) + 32B x 3w + 8B x 4w 

+ 8B x 5w). A five-bit shift register is used to store the input, and a priority encoder is 

used to select the longest match. 

The adaptive Huffman scheme is implemented using a 414-bit CAM for the 

priority list. The resulting chip has a 4.3 x 4.3 mm2 area, with a core area of 3.3 x 3.3 

mm2, power dissipation between 632 and 700mW, and operating frequency of 100 MHz 

(limited by the cycle time of the CAM) [27]. The amount of data reduction is about 

39.95% in average (a compression ratio of 2.5:1). 

 

Figure 35. Hardware proposal of Parallel Dictionary LZW plus adaptive Huffman 
showing the four variable-length dictionaries on the left for word lengths from five 

to two, and the adaptive Huffman priority queue on right (From [27]). 

2. X-MatchPRO [28]. 

 This hardware uses a fixed four-byte dictionary word of previously seen symbols 

and a match or partial match of those symbols, shown in Figure 36. The dictionary is 
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updated using a move-to-front strategy (MTF). When it becomes full, the last symbols are 

deleted. The token has four fields: a match/miss bit, the matched address, the Huffman-

encoded match type (full, partial, run length), and the unmatched literals. The run length 

is an eight-bit field that encodes the length of a match, from 0 to 255 (28). 

 The hardware architecture of this scheme is implemented as follows: 

X-MatchPRO uses a 16-bit data register and six registers for command and control; the 

input data can vary from eight bytes to 32 Kbytes. The dictionary uses a 16 x 4 

bytes/word CAM with predefined word lengths of 16, 32 or 64 bytes. Input data is 

compared with the dictionary data using XOR gates; AND gates are used to select just 

one output bit per word position. The clock period is reduced with pipeline registers to 

achieve better throughput. The percentage of data reduction is about 51% to 58% on 

average (a compression ratio between 1.96:1 and 1.72:1). 

 

Figure 36. Hardware proposal of X-MatchPRO, showing at the far left the dictionary 
CAM, and at the center the Huffman coder (From [28]). 

3. Branch-Predictor Compression Plus Variable-Length Code [29] 

 The focus of this scheme is to compress execution traces so that a program’s 

execution path to be recreated for debugging analysis by recording the program counter 

(PC) when changes in the program flow occur, and recording one of the following: 
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 • The branch target address (BTA), direct or indirect, in case of a control-

flow instruction; or  

 • The exception-handler target address (ETA), in case of an exception. 

 PC values are substituted by the sequential counting (SC) of instructions executed 

since the last change in the control flow [29]. 

 The key idea is to implement branch-prediction hardware on the host machine, and 

software for debugging analysis on the analyst machine, as in Figure 37. The host outputs 

data (indirect/direct BTA or ETA) only when a miss-prediction event occurs, together 

with a counter (SC) from the previous miss prediction. If an indirect BTA is the miss-

predicted event, it also outputs the correct target address (TA); during the debugging 

process the software will follow the same original execution and will count down starting 

from the miss-prediction counter (SL) received from the hardware. When the countdown 

reaches zero, the software knows that the actual prediction is wrong, and will take the 

opposite branch (opposite BTA) for a direct BTA, the received TA for an indirect BTA, 

or handle the exception (ETA). The output trace is also coded using a variable-length 

code. 

 The hardware architecture of this proposal is implemented as follows: 

The compression hardware is coupled with the CPU from which it takes the primary 

information such as the BTM, ETA, PC, instruction type, and exceptions. The TA output 

is the difference between the TA and the previous TA output using a simple XOR 

scheme. The compression ratio achieved is 1:419 (using 2,800 logic gates). 
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Figure 37. Branch-predictor compression plus variable length code (From [29]). This 
figure shows the host machine with the hardware model at the top, and the software 

in the analysis machine at the bottom. 

4. Stream-Based Compression (SBC) [30], [31] 

 For this scheme the authors base their algorithm on the fact that “most programs 

generate only a small number of unique instruction streams…. The starting address (SA) 

and length (SL) uniquely identify an instruction stream” [30], and instruction addresses 

often have a regular stride [30], [31] show in Figure 38. They give as an example the fact 

that “the average instruction stream length is about 12 instructions for the SPEC 

CPU2000 integer applications and about 117 instructions for the floating-point 

applications, with a maximum length of 3162 instructions and a minimal length of one 

instruction”[30], [32]. The compression is divided into instruction-address compression 

and data-address compression, generating two output files that can be further compressed 

using a dictionary method. 

 The stream-based compression method simplifies (compresses) the traces by 

dividing them. The addresses (SA) are kept in stream caches and stream buffers, and 

instructions are kept in data-address stride caches (DASC). During a search, if a match 

occurs, just the pointer to the data is output, as follows [30]. 
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 The trace is read, the instruction type and first data address are kept in the stream 

buffer, and the stream length (SL) is incremented until the next stream is detected. When 

a new stream is detected, the algorithm stops this phase and performs a search for the old 

stream in the stream cache (using a hash table to speed up the process). If there is a match 

(hit), the output is an index to the stream-cache table, which points to the field that 

contains the data address (SA) and length (L). If no match is found (miss), the algorithm 

outputs a miss flag, the first data address, and its length, and updates the stream cache. 

The decompression similarly accepts as input the stream index, and then the 

corresponding stream table field is accessed, giving the address of the first instruction, 

and respective stream length. 

 For the data address, the approach is to read the actual data address and the 

respective program counter. From the program counter, an index is computed, which is 

the index into the stride table. This table contains previous data addresses (LDA) and 

previous strides. The address pointed to by the index is compared with the actual address. 

If the stride remains the same as the previously stored stride, the algorithm outputs a one-

bit hit flag. If the stride changes, the new data address and stride are written to the table, 

and the miss flag and the actual address are output. 

 The hardware architecture of this scheme is implemented as follows: the overall 

size is 7629 bytes. Due to its small size, its speed of operation is the same as the CPU 

clock frequency [30]. This makes it suitable for a system-on-chip (SoC) type of hardware 

architecture. The compression ratio achieved is 125.9:1 for instruction-address traces and 

6.1:1 for data-address traces. 
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Figure 38. Stream-Based Compression (From [30], [31]). The compression is divided 
into instruction and data-address compression, generating two output files that can 
be further compressed using a dictionary method. Instruction address compression 

(left) is divided into address (SA) and length (SL), which are compared with 
cached values. If a match occurs, a hit flag is output. In data-address compression 
(right), input data is compared with cached data. If the strides remain the same, a 

hit flag is output. 

5. Reduction, Encoding Plus LZ [47] 

 This scheme has three phases: the first phase is branch/target filtering, which 

computes only discontinuous addresses to reduce the trace size; the second encodes the 

first phase’s addresses to reduce the average bit length; and the third phase is a common 

LZ compression algorithm. This method also has the goals of a real-time compression and 

compact size compatible with system-on-chip (SoC) implementation. 

 The trace has sixteen bits for each CPU cycle, five bits of pipeline status 

information, eight bits of indirect PC, and three bits of breakpoint qualification 

information. The author argues that “from these addresses, host-side debug software can 

reconstruct the instruction-execution trace” [47]. 

 The first phase, shown in Figure 39, takes advantage of the sequential instructions 

presented inside a basic block (a sequence of linearly executed instructions initiated by a 
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target instruction and ended with a branch instruction). The algorithm stores a sequential 

offset value from a basic block in one register, and every time a new data is input, the 

algorithm compares the offset with the stored one. If the offset is different, a new branch 

has occurred. The actual data is a target address for the next basic block, and the previous 

data is the branch address of the previous basic block. This phase only outputs the target 

and the branch addresses; all other traces are omitted, as they are reconstructed from the 

stored offset. 

 

Figure 39. Phase one (From [47]). The hardware inputs all traces and outputs just the 
target and branch examples. 

 The second phase receives the target and branch addresses from phase one and 

encodes it. To encode the target address, there are two mechanisms: the first is a slicing 

module that divides the sixteen-bit address into small four-bits chunks and appends a 1 

between chunks that are part of the same address or a 0 if they belong to different 

addresses. The second mechanism is a slice encoding that, assuming consecutive target 

addresses from different basic blocks are similar, takes the chunks from the actual target 

address and compares them with the same chunks from the previous target address, 

outputting just the different chunks. All chunks are sent to an output FIFO buffer and to 

phase three, as shown in Figure 40. 

 For the branch addresses, this method exploits the property that in the same basic 

block, the difference between the target address and the branch address in binary has a 
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large number of leading zeros in the most significant bits, followed by a small string of 

ones and zeros that represent the difference. The algorithm exploits this property by 

slicing the address into equal chunks and computing the difference chunk-by-chunk, 

outputting a chunk only if the difference is nonzero. Therefore, the algorithm represents 

the branch addresses as a difference from the target address in the same basic block and 

eliminates all leading zeros, reducing the bit sizes of these addresses. 

 

Figure 40.  Phase two (From [47]). The hardware inputs just the target and branch 
addresses. For the target address it outputs the comparison that differs from the 
previous target address sliced chunk-by-chunk, and for the branch it outputs the 

difference from the respective target address. 

 Phase three is a simple LZ dictionary that receives data from phase two and 

compares with a dictionary of previously seen data, as explained before. The advantage is 

that after slicing data into small chunks during phase two, the size of the dictionary in 

phase three is much smaller, saving hardware cost and area. 

 The proposed hardware was implemented in Verilog HDL RTL code, and the 

compression ratios achieved are 1:3.3 for phase one alone, 1:7.2 for phase one plus two, 

and 1:454.5 for all three phases combined.  

6. IBM/AHA [40][41] 

 As an example of a commercially available 2D compression coprocessor, we 

describe the IBM/AHA products that use ALDC, an IBM compression algorithm. We 
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highlight it because AHA, a group from Comtech EF Data Corporation, a subsidiary of 

Comtech Telecommunications Corporation, is the “recognized global leader in satellite 

bandwidth efficiency and link optimization” [42]. 

 The basic blocks are the microprocessor interface, the input/output interfaces, and 

the compression/decompression engine, as shown in Figure 41. The microprocessor 

interface receives the control signals and provides status information to the 

microprocessor, via externally accessible registers. The input/output interfaces have 

sixteen-byte FIFO buffers, and the coprocessor receives a single clock input. From the 

clock reference, it will generate all internally needed clock signals. The hardware can also 

interrupt data input/output when an almost-full buffer flag is raised, meaning that the 

device needs more time to transform data. 

 The hardware architecture of this scheme is implemented as follows: 

 The hardware is a 28 x 28 x 3.8 mm device with 144 pins. It receives a 5 (+- .25V) 

VDC power supply and a single clock signal. It is implemented in 0.8 micron CMOS, 

packed flat in plastic with a molded heat sink. The compression speed is up to 40 MB/s. 

Other variants can achieve 80 MB/s. 

 A 512-byte CAM is used for compression to maintain the history buffer. During 

decompression, a 512-byte RAM is used for the same purpose, and each status register is 

two bytes wide. 

 To start compression, the microprocessor sends the appropriate control signal to 

the microprocessor interface, and the signal is then forwarded to the appropriate register, 

which is read and decoded. The first data input is the size of the file to be compressed. 

Compression starts, data is output as it becomes available, and compression ends when 

the data counter reaches the size of the input file. This counter is a 32-bit register, 

allowing a maximum of four gigabytes of data to be transferred. Therefore, this is a 

limitation, as data has to be segmented into four gigabyte chunks. The reliability average 

failure rate is less than or equal to 100 PPM. The compression ratio achieved is 3:1. 
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Figure 41. The AHA-ALDC hardware is implemented using a series of 2MB registers 
in the processor interface, two sixteen-byte FIFO buffers in the interfaces to ports 
A and B, a 512-byte CAM for the ALDC compression dictionary and a 512-byte 
RAM for the ALDC decompression dictionary. The device is 28 x 28 x 3.8 mm, 
and the coprocessor achieves a compression ratio of 3:1 and a speed of 40 MB/s 

(From [41]). 

I. USAGE SCENARIOS 

We present two scenarios in which our proposed 3DIC system can be applied and 

a third general-application scenario that requires modifications from our original proposed 

design. 

Scenario one: Real-time analysis of malicious behavior. The ability to monitor 

computation planes fabricated in untrusted foundries by collecting, compressing, and 

encrypting traces using a low-cost, efficient control plane fabricated in a trusted foundry, 

providing significant benefits to trustworthy system design. The device sends the 

compressed and encrypted trace over the network to an analyzer that can automatically 

recognize suspicious behavior and alert the analyst. The large investment in the 

development of this architecture is amortized across many users, including ordinary 

customers who do not require a control plane to be attached and customers with high 

trustworthiness requirements who will purchase a device with a control plane attached. 
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Scenario two: Real-time analysis and debugging of software. As explained above, 

traces are helpful in tracking program execution behavior and determining where and 

when problems occur. By collecting and compressing those traces in real time, an analyst 

can speed up the analysis process. Also, by implementing a general-purpose processor in 

the computation plane, the cost of development of this 3D architecture can be amortized 

across many customers. 

 Although we are just discussing trace compression in this thesis, our proposed 

architecture is not restricted to this domain. Our proposed architecture can also be used 

for other scenarios, such as satellite compression of hyper-spectral data. Normal images 

consist of pixels, which are normally 24 bits long, to represent 16.78 million colors. 

Although this seems sufficient, “There is a large (and growing) field of applications that 

require images where each pixel is represented by hundreds or even thousands of bits. 

Such a large set of data is no longer referred to as an image, but is termed hyperspectral 

data” [9].  

 Military satellites do not rely on image sensors only: enemy equipment can be 

hidden below some vegetation coverage. Therefore, a satellite “has to measure the 

radiation reflected from each point on the ground in many wavelengths” [9]. “A typical 

spy camera consists of a set of sensitive sensors that can measure and record radiation in 

perhaps 250 frequency bands,” much more than the visible frequency boundary, “thus, 

each ‘pixel’ in the image taken by such a camera consists of 250 numbers, each an integer 

of at least 16 bits” [9].  

 For example, “the AVIRIS sensor (airborne visible/infrared imaging spectrometer) 

consists of three sensors of 64 frequency bands each plus a fourth sensor with 32 bands, 

for a total of 224 bands” [9]. Other examples include radar, radar altimeters (both 

microwaves and laser), radiometers, photometers, sonar (which is a hyper-spectral 

application because different sound frequencies penetrate the water and are reflected from 

objects in different ways [9]), medical imaging, and much more [9]. All of these 

applications need to compress data and send it for analysis, processing, and presentation 

as quickly as possible, and 3D compression/crypto hardware can provide the solution by 
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reducing the data size by placing the data transformation engine close to where the data is 

generated, reducing the overall cost, size, and duration of data manipulation. 

J. PERFORMANCE NUMBERS 

 This topic provides figures from the literature for comparing compression 

algorithms and their hardware implementations. The figures in each table correspond to 

the same data, and they originate from the literature cited in the references. 
 

COMPRESSION 

RATIO 

MEMORY 

[bytes] 

Adap Huffman 62.7 8K 

LZW 44.3 48K 

LZ78 39.6 350K 

Arithmetic 36.6 32-1400K 

LZ77 28.4 8K 

LZSS 27.3 2K 

Table 2.   Performance figures from the literature on some of the presented 
algorithms: compression ratio and memory required for compressing the same 

data as a means of comparison (From [26]). 
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Filter/Code + 

LZ 
- 51 185 96 

Filter/Code 

+ LZ 
6.36 - 

ALDC1-40S 0.8 70 40 40 ALDC 3 28 x 28 

PDLZW 

+AHDB 
0.35 130 100 

Compr:16.7-125 

Decompr:25-83 

LZW + 

Adapt 

Huffman 

2.5 - 

Hi/FN 0.35 100 80 80 LZS 2.25 - 

AHA 3521 0.5 - 40 40 ALDC 2.25 - 

AHA3580 - - 80 80 ALDC 2 14 x 14 

X-Match PRO 0.18 - 50 200 
X-Match 

PRO 
1.96 - 

AHA3231 0.5 - 40 40 LZ78 1.92 - 

Table 3.   This table summarizes performance figures from hardware 
implementations in the published literature (From [28]). The figures are 

organized in descending order of compression ratio and throughput 

 COMPRESSION RATIO 
MEMORY 

[bytes] 

GZIP-9 3.05 - 

GZIP-1 2.6 - 

LZS 2.3 8K 

ALDC 2.1 512 

VPC3 - 27M 

Table 4.    Like Table 3, this table summarizes compression ratios and memory 
requirements of some of the algorithms presented for compressing the same 

data as a means of comparison (From [26]). 
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IV. CRYPTOGRAPHY 

A. INTRODUCTION 

Cryptographic coprocessors are used in a variety of systems for which the 

efficiency of encryption and decryption is crucial. Originally developed for military 

cipher machines [48], cryptographic coprocessors have uses in smart cards, banking, 

telecommunications, networking, aerospace, and high-assurance computing platforms. A 

crypto coprocessor is a custom circuit for carrying out cryptographic transformations, 

often embedded in a tamper-resistant packaging. Systems will often combine a 

cryptographic coprocessor with a general-purpose processor, key storage, and other 

elements. A crypto coprocessor may implement just one algorithm or may support a 

variety of ciphers, e.g., DES, RSA, SHA-1, etc. A successful design and implementation 

requires careful balancing of tradeoffs between speed, cost, power, and security. 

B. DESCRIPTION OF A CRYPTOGRAPHIC COPROCESSOR 

A cryptographic coprocessor is a special-purpose computing environment, many 

of which environments are designed to withstand various kinds of attacks, e.g., physical 

probing or side-channel analysis [49], whereas others depend for protection on limiting 

access to the device. According to Smith and Weingart, crypto coprocessors are 

“computational devices that can be trusted to execute their software correctly, despite 

physical attack” [50]. Crypto coprocessors support many applications by implementing 

various cryptographic operations such as key distribution, key management, the 

management of digital certificates, encryption mechanisms, and decryption mechanisms.  

In general, a cryptographic coprocessor is a hardware device comprising the 

following parts: (1) a CPU, (2) bootstrap ROM, and (3) secure non-volatile memory [51]. 

In the majority of cases, this specific hardware device is physically shielded to protect it 

from tampering and side-channel attacks, and the I/O interface is the only way to access 

the internal state of the device. The device stores cryptographic keys securely. A crypto 

coprocessor can contain special-purpose hardware in addition to a general-purpose CPU 

and memory, e.g., high-speed encryption/decryption circuitry [51]. 
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The IBM 4758 and its successor, the IBM 4764, are two secure coprocessors in 

the market [52],[53]. Several research and development initiatives occurred prior to the 

development of the IBM secure coprocessors. Steven Kent’s 1980 thesis explored the 

application of what he named “tamper-resistant modules” (TRMs) to protect software 

[54]. Steve White and Liam Comerford at IBM Research implemented ABYSS (A Basic 

Yorktown Security System), an architecture that supports and ensures trusted execution of 

software [55]. Later, Steve White and his colleagues integrated the ABYSS design into an 

enhanced system, named Citadel [56], [57]. Some of the Citadel prototypes from IBM 

became the foundation of the Dyad project, built by Bennet Yee and J. D. Tygar in the 

early 1990s [58], [59], [60], [61]. Finally, Yee and Tygar developed four types of 

electronic-commerce applications on top of a secure coprocessor, including copy 

protection for software, electronic cash, and electronic contracts. 

C. THE HSSEC HIGH-SPEED CRYPTOGRAPHIC COPROCESSOR 

 In our proposed 3DIC implementation of a data-transformation coprocessor, we 

take inspiration from the HSSec high-speed cryptographic coprocessor [62]. 

 Kakarountas et al. designed HSSec [62], to implement two hash functions, SHA-1 

and SHA-512, and the symmetric block cipher AES-128 [62]. We share HSSec’s design 

goal of minimizing area and we save some room in the control plane for the compression 

coprocessor. We also follow HSSec’s design goal of maximizing throughput, which 

HSSec achieves using parallelism. Finally, the HSSec system can operate in electronic 

codebook (ECB) and cipher-block chaining (CBC) modes. The HSSec achieves a 

throughput of Gbps (AES, SHA-1 and SHA-512) for XILINX’s Virtex II FPGA family 

[62].  

 We first describe in depth the cryptographic functions of the coprocessor, AES-

128, SHA-1, and SHA-512. Next, we present the architecture of the HSSec coprocessor. 

Then, we present scenarios for utilizing a cryptographic coprocessor. Finally, based on 

analysis of the literature and other resources on cryptographic algorithms, we study the 

performance of AES-128, SHA-1, and SHA-512, gathering hard performance figures, 

including clock rate, throughput, and power consumption. 
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1. SHA-1 algorithm 

SHA-1 (Secure Hash Algorithm) is a cryptographic hash function designed by the 

National Security Agency and published by NIST as a U.S. Federal Information 

Processing Standard. SHA-1 is the most widely used of the existing SHA hash functions, 

and it is employed in several widely used security applications and protocols. SHA-1 is an 

iterated hash function with a 160-bit message digest. According to NIST, it is called 

secure because it is not computationally feasible to either 1) create a message that can be 

mapped to a given message digest or 2) create two different messages resulting in the 

same message digest [64]. Any change applied to a message will produce a totally 

different message digest. SHA-1 uses word-oriented operations on bit strings, where each 

word consists of 32 bits [63].  

SHA-1 is adequate for hashing a k-bit message, where . The algorithm 

consists of two stages: preprocessing; and computation of the hash [64]. The first stage 

pads the message and divides it into 512-bit blocks. It next determines the initialization 

values to be used in the next stage. The second stage generates a message schedule from 

the padded message and uses this message schedule, together with functions, constants, 

and word operations, to iteratively produce a series of hash values, one for each round. 

Each round uses the result of the previous round; SHA-1 requires 80 rounds to generate 

the 160-bit message digest [62]. The message digest is determined from the final hash 

value resulting from this iterative process. Appendix A provides a detailed explanation of 

the entire SHA-1 process. 

2. SHA-512 algorithm 

 SHA-512 (Secure Hash Algorithm) is a cryptographic hash function designed by 

the National Security Agency and published by NIST as a U.S. federal information-

processing standard. According to NIST, it is secure because it is computationally 

infeasible to: (1) find a message that can be mapped to a given message digest or (2) to 

find two different messages that map to the same message digest. Any change to a 

message will produce a totally different message digest. 

640 2k< <
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The algorithm consists of two stages: preprocessing; and computation of the hash 

[64]. The first stage pads the message and then divides it into m-bit blocks. It then 

determines the initialization values needed in the next stage. The hash-computation stage 

first generates a message schedule from the padded message and it uses this message 

schedule, together with functions, constants, and word operations, to iteratively generate a 

series of hash values. The final hash value resulting from this iterative process is the 

message digest.  

SHA-512 is adequate for hashing a k-bit message, where . The 

preprocessing phase pads the message and divides it into 1024-bit blocks. These specific 

blocks are needed to generate the message schedule. SHA-512 uses 80 rounds to generate 

the 512-bit message digest [62]. Each round requires the result of the previous round. 

Appendix B provides a detailed explanation of the entire SHA-512 process. 

3. AES-128 algorithm 

 AES is a round-based symmetric block cipher. It processes 128-bit data blocks and 

uses a key whose length can be 128, 192, or 256 bits [66]. Table 5 shows the available 

combinations of key, round, and block. Our proposed 3DIC incorporates AES-128 

circuitry. 

 Key Length 

(Nk words)  

Block Size (Nb 

words)  

Number of 

Rounds (Nr)  

AES-128  4  4  10  

AES-192  6  4  12  

AES-256  8  4  14  

Table 5.   Key–Block–Round Combinations (From [66]). 

a. AES-128 Transformations 

 AES-128 belongs to the family of round-based symmetrical block ciphers. 

AES-128 accepts a 128-bit data block as input and performs many different 

transformations on this block. During the encryption phase, the input block of the AES is 

plaintext, and the output block is ciphertext. All the other intermediate values of the 

1280 2k< <
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block, during its transformation from plaintext to ciphertext, are states [63], [67]. A state 

is a four-by-four matrix of bytes, as depicted in Figure 42. 

 

Figure 42. An AES state (From [66]). The first byte of the block resides in the upper-
left corner of the matrix; remaining bytes fill out the rest of the matrix. The AES 

algorithm transforms a plaintext block to a ciphertext block. The intermediate 
values of the block are states, and the final value of the block is the ciphertext. 

 AES transforms the 128-bit input/output block as follows: the first byte of 

the block resides in the upper-left corner of the matrix, and the remaining bytes fill out the 

rest. The AES algorithm transforms a plaintext block to a ciphertext block. The 

intermediate values of the block are states, and the final value of the block is the 

ciphertext [63][67]. AES performs four transformations: SubBytes, ShiftRows, 

MixColumns, and AddRoundKey, which are performed in that order repeatedly. Each of 

these transformations, described below, maps a 128-bit input state to a 128-bit output state 

[63]. A round of encryption applies each transformation once. For AES-128, ten rounds 

must be performed, as shown in Table 5. The following describes the four transformations 

in detail: 

• The SubBytes transformation is “a nonlinear byte substitution that operates 

independently on each byte of the state using a substitution table (S-box)” [66]. 

Each byte of the input state is replaced according to a substitution table (S-box) 

S0,0 S0,1 S0,2 S0,3

S1,0 S1,1 S1,2 S1,3

S2,0 S2,1 S2,2 S2,3

S3,0 S3,1 S3,2 S3,3

S
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[63]. The S-Box computes the multiplicative inverse in the Galois Field  

with the irreducible polynomial followed by an affine 

transformation (one transformation consisting of a multiplication by a matrix 

followed by the addition of a vector) [63][66]. Figure 43 illustrates the effect of 

the SubBytes transformation on the State. This transformation provides resistance 

to differential and linear cryptanalysis attacks [65].  

 
Figure 43. SubBytes() applies the S-box to each byte of the state (From [66]). Each 

byte of the input state is replaced using the same substitution table (S-box). 

• In the ShiftRows() transformation, the bytes in the last three rows of the state are 

cyclically shifted over different numbers of bytes according to offset values 

[66][67]. For instance, row one contains elements S1,0 - S1,1 - S1,2 - S1,3; after the 

ShiftRows() transformation, row one is rotated by one position to the left. The first 

row, r = 0, is not shifted. Figure 44 illustrates the ShiftRows() transformation [66]. 

This transformation causes diffusion of the bits over multiple rounds [65]. 

8(2 )GF

8 4 3( ) 1m x x x x x= + + + +

S0,0 S0,1 S0,2 S0,3

S1,0 S1,1 S1,2 S1,3

S2,0 S2,1 S2,2 S2,3

S3,0 S3,1 S3,2 S3,3

S’0,0 S’0,1 S’0,2 S’0,3

S’1,0 S’1,1 S’1,2 S’1,3

S’2,0 S’2,1 S’2,2 S’2,3

S’3,0 S’3,1 S’3,2 S’3,3

S-Box

Sr,c S’r,c
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Figure 44. ShiftRows() cyclically shifts the last three rows in the state (From [66]). 

For instance, row one contains elements S1,0 - S1,1 - S1,2 - S1,3; after the ShiftRows() 
transformation, row one is rotated by one position to the left. The first row, r = 0, is 

not shifted. 

• The MixColumns() transformation, according to NIST, “operates on the state 

column-by-column, treating each column as a four-term polynomial” over Galois 

field , and it is multiplied modulo  with the constant polynomial, 

[65], [66]. This transformation maps between 

a column of the input state and a column of the output state [63]. Figure 45 

illustrates the MixColumns() transformation. 

S0,0 S0,1 S0,2 S0,3

S1,0 S1,1 S1,2 S1,3

S2,0 S2,1 S2,2 S2,3

S3,0 S3,1 S3,2 S3,3

S’0,0 S’0,1 S’0,2 S’0,3

S’1,0 S’1,1 S’1,2 S’1,3

S’2,0 S’2,1 S’2,2 S’2,3

S’3,0 S’3,1 S’3,2 S’3,3

S S’

Sr,0 Sr,1 Sr,2 S0,3 S’r,0 S’r,1 S’r,2 S’r,3

ShiftRows

8(2 )GF 4 1x +

3 2( ) {03} {01} {01} {02}a x x x x= + + +
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Figure 45. MixColumns() operates on the state column-by-column (From [66]). This 

transformation maps between columns of the input and output states. 

• AddRoundKey: According to NIST in this transformation, “a round key is added 

to the state by a simple bitwise XOR operation.” The AddRoundKey 

transformation is self-inverting. It maps a 128-bit input state to a 128-bit output 

state by performing an “xor” operation on the input state with a 128-bit round key 

[63], [66]. 

The four transformations described above are applied to a 128-bit input 

block in sequence in order to perform AES encryption or decryption. For both encryption 

and decryption, the transformations are grouped into rounds. There are three different 

types of rounds: the initial, the normal, and the final [63]. The transformations and 

sequence of the rounds are depicted in Fig. 46. The number of rounds, Nr, depends on the 

key size. AES -128 consists of the following basic steps [63]: 

1. For a specific plaintext (κ), initialize state to be (κ), and execute 

AddRoundKey, which performs an “xor” of the RoundKey with the state. 

2. For each of the first nine rounds, perform SubBytes on the state using a 

substitution table (S-box). Then, perform ShiftRows on the state, followed by 

MixColumns, and AddRoundKey. 

3. Perform SubBytes, ShiftRows, and AddRoundKey. 

4. The ciphertext (λ) is the state. 

 

S0,0 S0,1 S0,2 S0,3

S1,0 S1,1 S1,2 S1,3

S2,0 S2,1 S2,2 S2,3

S3,0 S3,1 S3,2 S3,3

S’0,0 S’0,1 S’0,2 S’0,3

S’1,0 S’1,1 S’1,2 S’1,3

S’2,0 S’2,1 S’2,2 S’2,3

S’3,0 S’3,1 S’3,2 S’3,3

S0,c

S1,c

S2,c

S3,c

S’0,c

S’1,c

S’2,c

S’3,c

MixColumns() 
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Figure 46. The operation of the AES-128 algorithm, where Nr = 10 for cipher keys of 

length 128bits (From [65], [68]). Each round uses a round key derived from the 
original key (the round-zero key). Each round starts with an input of 128 bits and 

produces an output of 128 bits. First, it performs AddRoundKey, using the original 
key (the round-zero key). Next, for each of the first nine rounds, it performs 
SubBytes on the state using a substitution table (S-box). Then, it performs 

ShiftRows on state, followed by MixColumns and AddRoundKey. Finally, during 
the tenth round it performs SubBytes, ShiftRows, and AddRoundKey using the 

tenth round key. The ciphertext is the 128-bit output block. 

Sub Bytes

Shift Rows

Add round Key

Plaintext

Add round Key

Sub Bytes

Shift Rows

Mix Columns

Add round Key

Sub Bytes
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Add round Key
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Round 0 (initial round)

Round 1 (normal round)

Round 9 (normal round)

Round 10 (final round)
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b. AES-128 Key Expansion Process 

 The initial 128-bit cipher key [63] is expanded to eleven 128-bit round 

keys. The first round key is the cipher key ( ), and all subsequent round keys 

are the result of applying a function to the previous round key. If this function is f, then 

the process may be modeled as, 

 

The AES-128 algorithm [66] takes the cipher key, K, and performs a key-

expansion routine to generate a key schedule. The key expansion generates a total of Nb 

(Nr + 1) words, where Nb is the block size, and Nr is the number of rounds. If we use the 

values in Table 5, we have a total of 44 words. AES-128 needs an initial set of ten words, 

and each of the four rounds requires ten words of key data. The derived key schedule 

consists of a linear array of four-byte words, denoted as [wi], with i belong in the range 0 

<= i < 44. For the key-expansion process, two functions are required, SubWord() and 

RotWord(). According to NIST, “SubWord() is a function that takes a four-byte input 

word and applies the S-Box to each of the four bytes to produce an output word. The 

function RotWord() takes a word [a0,a1,a2,a3] as input, performs a cyclic permutation, 

and returns the word [a1,a2,a3,a0]” [66]. Figure 47 shows how the word array W 

[0….43] is mapped to the corresponding eleven round keys. 

 
Figure 47. Mapping of the key words to round keys (From [69]). 

0RoundKey

1RoundKey f (RoundKey ), for all 0 i  11 i i−= < <
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c. Electronic Codebook (ECB) and Cipher Block Chaining (CBC) 
Modes 

AES-128 supports five modes, including Electronic Codebook (ECB), 

Cipher Block Chaining (CBC), Cipher Feedback (CFB), Output Feedback (OFB), and 

Counter (CTR) modes, which provide confidentiality [70]. For our proposed 3DIC 

cryptographic coprocessor design, we have chosen the symmetrical block cipher AES-128 

ECB and CBC modes. 

 Electronic-codebook (ECB) mode partitions the message into several n-bit 

blocks, adding padding if required, and enciphering each block [71]. A major advantage 

of ECB is the ability to decrypt the blocks independently, in parallel. Also, if an error 

occurs during transmission or encryption, the error is isolated and local, affecting only the 

block in which the error occurred. However, that property can also be disadvantage. If the 

same key enciphers more than one block, a cryptanalyst can decipher the message using 

less effort than a brute-force attack. The electronic codebook (ECB) mode is defined as 

follows [70]: 

 

 

 
Where  corresponds to the the jth ciphertext block,  to the jth plaintext block, 

 to the forward cipher function of the block cipher algorithm under the key K 

applied to the data block , and to the inverse cipher function of the block 

cipher algorithm under the key K applied to the data block .” 

According to NIST, “in ECB encryption, the forward-cipher function is 

applied directly and independently to each block of the plaintext. The resulting sequence 

of output blocks is the ciphertext. In ECB decryption, the inverse-cipher function is 

applied directly and independently to each block of the ciphertext” [70]. The resulting 

sequence of output blocks is the plaintext. ECB mode is depicted in Figure 48. 
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Figure 48. ECB mode operation (From [70]). For a given sequence of 
plaintext/ciphertext blocks, each block is encrypted/decrypted with the same key, 

resulting in a string of ciphertext/plaintext blocks. 

  Cipher-block chaining (CBC) mode [70], [71] computes the XOR of the 

first plaintext block with an initialization vector (IV), which must be unpredictable. 

Additionally, the integrity of the IV should be protected, although it does not necessarily 

have to be secret. The j-th plaintext block is XORed with the (j−1)-th ciphertext block 

prior to being encrypted with the block cipher [71]. More formally, the CBC mode is 

defined as follows: “ 
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INPUT BLOCK
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Where  corresponds to the the j th ciphertext block,  to the jth plaintext block, IV to 

the initializing vector, to the forward cipher function of the block cipher 

algorithm under the key K applied to the data block X,  to the inverse cipher 

function of the block cipher algorithm under the key K applied to the data block X” [70]. 

 In CBC encryption [70], the first input block is computed by taking the 

“xor” of the first plaintext block and the IV. The result of this XOR operation is the input 

to the block cipher, which produces the first block of the ciphertext. Next, the XOR of the 

first ciphertext block, and the second plaintext block is enciphered to produce the second 

paintext block. 

 In CBC decryption [70], to obtain any plaintext block (aside from the 

first), the inverse cipher function is applied to the corresponding ciphertext block, and the 

result is XORed with the previous ciphertext block. 

Figure 49 depicts the operation of the CBC mode. 
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Figure 49. CBC mode (From [70]). In CBC encryption, the first input block is formed 

by taking the “xor” of the initial block of the plaintext with the IV. The result of the 
XOR is enciphered, resulting in the first block of the ciphertext. In CBC 

decryption, in order to decrypt any plaintext block (aside from the first), the inverse 
cipher function is applied to the corresponding ciphertext block, and the resulting 

block is XORed with the previous ciphertext block. 

4. The HSSec High-Speed Cryptographic Coprocessor Architecture 

 The architecture of the HSSec cryptographic coprocessor [62] consists of a central 

control unit and various processing elements that are peripheral to the central control unit. 

For data input/output, a single 32-bit wide data bus is used. Also, for SHA-1 and SHA-

512 output, another 32-bit wide data bus is used. Table 2 shows the control signals. The 

main purpose of the control unit is to coordinate data processing. It is also responsible for 

the communication between the cryptographic coprocessor and the outside world. The 

cryptographic primitives (AES-128, SHA-1, SHA-512) are arranged in a parallel 
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orientation and utilize a common 64-bit global data bus. This bus is also responsible for 

providing data to the memory unit and to the key scheduler. 

The key-scheduler block [62] is fundamental to the proper execution and operation 

of the three cryptographic algorithms supported by the coprocessor. More specifically, it 

supports two core processes for the cryptographic algorithms. First, it controls the key 

expansion of AES-128 and generates the message schedules. As described earlier, during 

AES-128 encryption, the 128-bit cipher key must first be expanded to eleven 12-bit round 

keys. The first round key is the cipher key ( ), and all subsequent round keys 

are generated by applying a function to the previous round key. If f is this function, then 

the process may be modeled as: 

 
Therefore, the key scheduler has two basic transformation functions, RotWord and 

SubWord, described above. The key scheduler also provides the constants required for the 

hash functions. SHA-1 uses a sequence of eighty constant, 32-bit words, while SHA-512 

uses the a sequence of eighty constant, 64-bit words. 

 The mode interface [62] modifies input to the three cryptographic modules of the 

cryptographic coprocessor. 

 The memory block [62] consists of three main parts. The first part is a set of 

registers used to store the initialization values required by the three cryptographic 

algorithms. The second part is a general-purpose register file used for storing temporary 

values for quick access. The last part is the padding unit used for storing fetched data. 

Specifically, this part consists of eight 128-bit banks. Thus, each bank can support the 

minimum data-input size required by AES-128. For as for SHA-1, the required number of 

bits for the input data is 512; thus, four banks are needed. However, the required bits for 

the input data for SHA-512 are 1024; thus, eight banks are sufficient. Therefore, using 

eight banks, 128 bits each, for the padding unit meets the requirements for the three 

cryptographic algorithms. 

 Figure 50 depicts the architecture of the HSSec cryptographic coprocessor, and 

Figure 51 shows the memory organization. Table 6 presents the control signals of the 

coprocessor.  

0RoundKey

1RoundKey f (RoundKey ), for all 0 i  11 i i−= < <
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Figure 50. Main architecture of HSSec cryptographic coprocessor (From [62]). The 
control unit manages data processing and communication with the outside world. 

Cryptographic primitives (AES-128, SHA-1, and SHA-512) are arranged in a 
parallel orientation and use a common 64-bit global data bus. The key-scheduler 
block is used for key expansion and generating message schedules. The memory 
block consists of a register file, padding unit, and S boxes. The mode interface is 

responsible for modifying the input to the cryptographic primitives. The key 
scheduler performs the RotWord and SubWord transformations described above. 
The key scheduler also provides constants needed by the hash functions: SHA-1 

uses a sequence of eighty, constant 32-bit words, and SHA-512 uses a sequence of 
eighty, constant 64-bit words. 
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Figure 51. Organization of the memory block (From [62]). The memory block 
consists of three main parts. The first part is a set of registers used for storage of the 

initialization values required by the three cryptographic algorithms. The second 
part is a general-purpose register file used for storing temporary values that can be 

accessed quickly. The third part is the padding unit. 
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Signal  Description 

READY Manages the synchronization of the coprocessor in 

order to receive data. It also controls the flow of data. 

SEND 1. Manages the synchronization of the coprocessor in 

order to send data. It also controls the flow of data. 

2. Used also as a halt signal.  

AES_en Selection of AES-128 cryptographic algorithm. 

SHA1_en Selection of SHA_1 cryptographic algorithm. 

SHA512_en Selection of SHA_512 cryptographic algorithm. 

MODE Selection of mode CBC or ECB for AES-128. 

OUT_hot Determines which cryptographic algorithm is being 

used to coordinate the control of the output. 

OUT_AES Determines which cryptographic algorithm is being 

used to coordinate the control of the output. 

OUT_1/512 Determines which cryptographic algorithm is being 

used to coordinate the control of the output. 

KEY Key indication 

Clk Clock signal 

Reset Reset signal 

Table 6.   Control signals of the HSSec cryptographic coprocessor (After [62]). 

5. Use Scenario 

 The growing use of web services has resulted in an increased demand for 

confidentiality, integrity, and availability of data. One way to address these requirements 

is the use of the cryptographic coprocessor. In the following use scenario, we will explain 

how crypto coprocessors help provide security. More specifically, we will explore how 

credit-card transaction security is enhanced with the use of a cryptographic coprocessor. 

Billions of transactions occur daily across the world over the web. A client sends critical 

personal data such as credit-card information and transaction amount when purchasing an 
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item. An attacker able to compromise the server can access the sensitive data and use it 

for a variety of nefarious purposes: 

• The attacker can use the credit-card information to conduct future transactions. 

• The attacker can replay the same transaction multiple times. 

• The attacker can increase the amount of the transaction. 

All these threats motivate a customer to conduct business on well-established sites only. 

Suppose that a customer wants to purchase a bike that is cheaper on a less established site. 

 With the use of a crypto coprocessor, the hypothetical transaction described above 

can be more secure. In this scenario, the cryptographic coprocessor resides on the server. 

The cryptographic coprocessor protects the personal information and transaction data by 

transmitting the data through a secure cryptographic channel to the customer’s system. All 

sensitive personal-transaction data are encrypted when they are outside the server’s 

domain. Neither an adversary nor an operator of the server can change the transaction 

data, and the transaction can execute securely [72]. 

6. Cryptographic Algorithm Performance 

 According to Schneier and Whiting, the principal criterion when designing or 

selecting a cryptographic application should always be security [73]. However, in the real 

world, high performance of the application is desirable. Therefore, the designer must 

balance the tradeoffs of security, performance, and usability of a cryptographic 

application [75]. Therefore, increasing a system’s security may require compromising its 

usability and/or performance. 

 Below we present performance figures of AES-128, SHA-1, and SHA-512 in 

terms of speed, throughput, and power consumption from the literature. Our objective is 

not to determine which cryptographic algorithm is most efficient; rather, we will use the 

performance figures for making design decisions for our proposed 3DIC data-

transformation system. Moreover, according to Scheiner et al., “it is very difficult to 

compare cipher designs for efficiency, and even more difficult to design ciphers that are 

efficient across all platforms and all users” [73]. 
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a. SHA-1 and SHA-512 Performance 

  We first present performance data on SHA-1 and SHA-512 from speed 

benchmarks from the Crypto C++ library [74]. These speed benchmarks are based on 

algorithms implemented in C++, compiled with Microsoft Visual C++ 2005 SP1 (whole 

program optimization, optimized for speed), and executed on an Intel Core 2 1.83 GHz 

processor running Windows Vista in 32-bit mode [74]. 

 

Algorithm MB/Second Cycles Per Byte 

SHA-1 153 11.4 
SHA-256 111 15.8 
SHA-512 99 17.7 

Table 7.   Encryption rate in MB per sec and cycles per byte for SHA-1, SHA-256, 
and SHA-512 (From [74]). 

 

Figure 52. Encryption rate in MB per sec for SHA-1, SHA-256, and SHA-512 (From 
[74]). SHA-1 has the largest encryption rate, followed by SHA-256 and SHA-512. 
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Figure 53. Number of cycles per byte for SHA-1, SHA-256, SHA-512 (From [74]). 
SHA-1 has the smallest number of cycles, followed by SHA-256 and SHA-512. 

  As explained above, SHA-1 generates a 160-bit message digest, and SHA-

512 generates a 512-bit digest. SHA-512’s longer hash value increases its resistance 

against a brute-force attack, compared to SHA-1’s shorter hash value. However, SHA-1 is 

faster than SHA-512. 

  Next research compares the performance of different encryption 

algorithms, including SHA-1 and SHA-512, implemented within the .NET framework 

[75]. The .NET is an integral part of various applications running on Windows platforms 

and provides common functionality for those applications. It consists of a library and 

supports various programming languages The .NET framework's base-class library 

provides various elements such as user interface, data access, database connectivity, 

cryptography, web application development, and network communications [76]. 

Prior research measured the effect on the performance impact on MD5, 

SHA-1, and SHA-512 of varying the data size from 4KB to 135KB and 1MB [75]. 

Specifically, Dhawan measured performance in terms of requests per second for different 

user loads (different numbers of users) for different data sizes [75]. 
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Figure 54. Hash algorithms (From [75]). MD5, SHA-1, SHA-512 for a data size of 4 

KB: requests per second (RPS) and response time. All three algorithms have nearly 
the same performance, with SHA-512 being slightly slower. 
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Figure 55. Hash algorithms (From [75]). MD5, SHA-1, SHA-512 for a data size of 

135 KB: Requests per second (RPS) and response time. As the data size increases 
to 135 KB, there are more variations in the speed. For five users, as SHA-512 is 
almost 55% slower than SHA-1, and SHA-1 is almost 33% slower than MD5. 
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Figure 56. Hash algorithms (From [75]). MD5, SHA-1, and SHA-512 for a data size 
of 1MB: requests per second (RPS) and response time. As the data size increases to 

1 MB, there are more variations in speed. For five users, SHA-1 is almost 72% 
faster than SHA-512. 

  These experiments show that larger message digests reduce the 

performance of the hash algorithms. This is an example of a tradeoff between security and 

performance.  
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  Gladman explores the performance of a family of hash algorithms in terms 

of cycles per byte on Intel and AMD systems for different data lengths, from 1 to 

100,000 bytes [77]. 

Data Length 1 10 100 1,000 10,000 100,000 
AMD64 (64 bit mode) 

SHA1 672 70.1 13.07 9.79 9.4 9.7 
SHA224 1436 145.3 27.9 21.1 20.4 20.4 
SHA256 1483 149.9 28.4 21.1 20.4 20.4 
SHA384 1864 187.9 19.9 13.9 13.5 13.4 
SHA512 1939 195.6 20.6 14.0 13.5 13.4 

Table 8.   Cycles per byte for the family of SHA algorithms on an AMD 64 system 
(From [77]). 

 
 

Figure 57.  Performance of the SHA family of algorithms on an AMD 64 system 
(From [77]). For SHA-1, hashing one byte requires nearly 672 machine cycles, 

while SHA-512 requires 1939 cycles. Thus, SHA-1 is faster than SHA-512. 
Increasing the data length decreases the difference in speed, but SHA-1 is faster 

than SHA-512 in all cases. 
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Data Length 1 10 100 1,000 10,000 100,000 
Intel P3 

SHA1 1401 128.1 22.9 20.5 20.2 17.2 
SHA224 2865 294.1 59.4 42.7 41.4 41.0 
SHA256 2993 292.5 55.8 42.7 41.5 41.0 
SHA384 23253 2380.1 241.9 177.9 174.5 173.1 
SHA512 23653 2433.7 239.2 177.5 174.7 172.8 

Table 9.   Cycles per byte for the SHA family of algorithms on an Intel P3 system 
(From [77]). 

 
Figure 58. Speed of the SHA family of algorithms on an Intel P3 system (From [77]). 

SHA-1 requires nearly 1401 machine cycles to hash one byte, while SHA-512 
requires 23653 cycles. Thus, SHA-1 is faster than SHA-512. Increasing the data 

length increases the difference in speed, but SHA-1 is faster compared to SHA-512 
in all cases. 

 These experiments demonstrate that SHA-1 is faster than SHA-512. However, 

SHA-512 is much more resistant to brute-force attack, because it generates a 512-bit hash 
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and performance. 
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b. AES-128 Performance 

  For AES-128, we present performance figures from previous research in 

terms of speed, time, and energy consumption.  

  We present speed data for AES (128,192,256) with electronic codebook 

(ECB), cipher-block chaining (CBC), cipher feedback (CFB), output feedback (OFB), and 

counter (CTR) modes from Crypto++ [74]. These figures reflect the performance of AES 

implemented in C++, compiled with Microsoft Visual C++ 2005 SP1 and executed on a 

1.83 GHz Intel Core 2 processor running Windows Vista in 32-bit mode [74]. Figures 59 

and 60 show that AES-128 is faster than AES-192 and AES-256. Also, AES/CTR mode 

(128-bit key) is the fastest configuration, with a encryption rate of 139 MB/sec. The 

slowest configuration is AES/CBC (256-bit key) with an encryption rate of 80 MB/sec. 

Algorithm MB/Second Cycles Per Byte 

AES/CTR (128-bit key) 139 12.6 
AES/CTR (192-bit key) 113 15.4 
AES/CTR (256-bit key) 96 18.2 
AES/CBC (128-bit key) 109 16.0 
AES/CBC (192-bit key) 92 18.9 
AES/CBC (256-bit key) 80 21.7 
AES/OFB (128-bit key) 103 16.9 
AES/CFB (128-bit key) 108 16.1 
AES/ECB (128-bit key) 109 16.0 

Table 10.   Encryption rate in MB per sec and cycles per byte for AES-128, AES-192, 
and AES-256 in conjunction with electronic codebook (ECB), cipher-block 

chaining (CBC), cipher feedback (CFB), output feedback (OFB), and counter 
(CTR) modes (From [74]). 
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Figure 59.  Number of cycles per byte for various combinations of AES key lengths 
and block cipher modes (From [74]). AES-128 for every mode is faster than AES-
192 and AES-256. AES/CTR mode (128-bit key) is the fastest combination. All 

other combinations have performances ranging from 15.4 to 18.9 cycles per byte. 
The slowest combination is AES/CBC (256-bit key). 
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Figure 60. Encryption rate in MB/sec for various combinations of AES key lengths 

and block cipher modes (From [74]). AES-128 for every mode is faster than AES-
192 and AES-256. AES/CTR mode (128-bit key) is the fastest combination, with 

an encryption rate of 139 MB/sec. The slowest combination is AES/CBC (256 – bit 
key). 

  Al Tamimi presents experimental results based on a C++ library 

implementing some of the most commonly used cryptographic algorithms [78]. AES-128, 

AES-192, and AES-256 were implemented in C++, compiled with Microsoft Visual C++ 

.NET 2003, and executed on a 2.1 GHz Pentium 4 processor running Windows XP SP 1.  
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This experiment explored the speed of AES for a data length of 256 MB. Figures 61, 62, 

and 63 show that AES-128 is faster than AES-192 and AES-256. Therefore, AES-256 

sacrifices some performance for greater security. 

Table 11.   Performance of AES-128, AES-192, and AES-256 to process 256 MB of 
data in terms of CPU time and the encryption rate in MB/sec (From 

[78]). 

 

Figure 61. Time required for AES-128, AES-192, and AES-256 to encrypt 256Mb of 
data (From [78]). AES-128 requires the least time (4,196 sec) and AES-256 

requires the most time (5,308).  
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Algorithm Megabytes 

Processed 

Time Taken(sec) MB/sec 

AES-128 256 4,196 61,010 

AES-192 256 4,817 53,145 

AES-256 256 5,308 48,229 
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Figure 62. Encryption rate for AES-128, AES-192, and AES-256 to encrypt 256MB 
of data (From [78]). AES-128 has the largest encryption rate (61.01 MB/sec), and 

AES-256 has the smallest (48.229 MB/sec).  

 

Figure 63. CPU time and encryption rate for AES-128, AES-192, and AES-256 to 
encrypt 256MB of data (From [78]). AES-128 has the highest encryption rate and 

the shortest time and is faster than AES-192 and AES-256. 
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  In addition to speed, power is another important design constraint. For 

example, battery life is important for embedded systems supporting cryptographic 

applications. Cryptographic algorithms can be intense computations requiring substantial 

power consumption. Below we present two studies on power consumption for 

cryptographic applications, which show that the use of longer keys increases power 

consumption. 

  Hirani’s dissertation explores the power consumption of various 

cryptographic algorithms, both symmetric and asymmetric, used by applications in 

wireless networks [79]. Hirani presents experimental results for AES for different key 

lengths (128, 192, and 256 bits). He first compares the changes in power consumption for 

different AES key lengths. Figure 64 shows that as the key length increases, so does 

power consumption. For AES-192, there is an increase of 8% in power consumption 

compared to AES-128, while AES-256 experiences an increase of 16% compared to AES-

128. Therefore, increasing key length achieves greater security and resistance to attacks at 

the expense of an increase in power consumption. 

Algorithm Battery 

consumption (%) 

AES-128 0.0041 

AES-192 0.0044 

AES-256 0.0047 

Table 12.   Battery consumption for AES for different key lengths (From [79]). 
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Figure 64. Battery consumption (%) for different AES key lengths (From [79]). AES-
128 has the smallest power consumption, while AES-256 consumes the most 

power. 

  Potlapally et al. analyze the energy consumption of security protocols [80]. 
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battery and measure the power consumed during each cycle of the cryptographic 

algorithm. They provide power consumption figures for AES-128, AES-192, and AES-

256 in conjunction with electronic codebook (ECB), cipher-block chaining (CBC), cipher 

feedback (CFB), and output feedback (OFB). Their analysis also includes the key setup 

phase. Their analysis shows that AES-128 has the lowest power consumption for the key 

setup phase and for all block cipher mode configurations of AES. Also, CFB mode has 

the highest energy consumption of any AES operating mode, while ECB is the most 
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Key Size Key 
setup(μJ) 

ECB (μJ/B) CBC (μJ/B) CFB (μJ/B) OFB (μJ/B) 

128 7,83 1,21 1,62 1,91 1,62 
192 7,87 1,42 2,08 2,3 1,83 
256 9,92 1,64 2,29 2,31 2,05 

Table 13.   Energy consumption of various combinations of AES block cipher modes 
and key sizes, From [80].  

 
Figure 65. Power consumption of AES-128, AES-192, and AES-256 in key setup 

phase and in conjunction with electronic codebook (ECB), cipher-block chaining 
(CBC), cipher feedback (CFB), and output feedback (OFB) modes (From [80]). 
AES-128 has the lowest power consumption for the key setup phase and for all 

block cipher modes. Also, CFB mode has the highest energy consumption of any 
AES operation mode, while ECB has the lowest. 

  In conclusion, the designer of a cryptographic application must balance 

many performance constraints. For example, increasing the key length increases security, 

but also increases power consumption and processing time, while decreasing the 

encryption rate. 

7.83 

1.21 1.62 1.91 1.62 

7.87 

1.42 
2.08 2.3 1.83 

9.92 

1.64 
2.29 2.31 

2.05 

0

2

4

6

8

10

12

Key setup(μJ) ECB (μJ/B) CBC (μJ/B) CFB  (μJ/B) OFB  (μJ/B) 

Po
w

er
 C

on
su

m
pt

io
n 

AES-128 AES-192 AES-256



 117 

V. 3D INTEGRATED CIRCUIT ARCHITECTURE 

A. INTRODUCTION 

 3D integration is an emerging integrated-circuit fabrication technology in which 

two or more IC dies are vertically stacked and connected with conductive posts. This 

allows a commodity die, or computation plane, to be combined with a custom die, or 

control plane. We envision a two-die system consisting of a general-purpose CPU in the 

computation plane and a data transformation coprocessor in the control plane.  

 In one application of 3D integration, a profile of signals in the computation plane 

is delivered at very high bandwidth to the control plane, where they can be compressed 

using an efficient hardware compression circuit. Once the data is compressed, it can then 

be sent off-chip for analysis over a lower bandwidth channel to a storage device. A major 

advantage of a 3D approach is reduced delay and increased bandwidth between the 

computation and compression functions, compared to a 2D implementation. This 

advantage can be applied to dynamic program analysis for reverse engineering of 

malicious software and post-mortem analysis of a system that has suffered an attack. The 

amount of data collected depends on the granularity of the signals collection and the 

speed of the system: collecting more signals results in a larger data stream. The high 

bandwidth between layers possible with 3D integration has the potential to increase the 

bandwidth to off-chip storage and to reduce the on-chip storage need. 

 Crypto processors are widely used in a variety of critical systems that require 

higher bandwidth encryption than that available with software encryption. They were 

initially developed for military cipher machines but have spread to smart cards, banking, 

telecommunications, networking, aerospace, and high-assurance computing platforms. A 

crypto coprocessor is a custom circuit for carrying out cryptographic transformations, 

often embedded in a tamper-resistant packaging. Systems will often combine a 

cryptographic coprocessor with a general-purpose processor, key storage, and other 

elements. A crypto coprocessor may implement just one algorithm or may support a 

variety of ciphers, e.g., DES, RSA, SHA-1, etc. To achieve the highest possible 
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performance requires careful balancing of tradeoffs between speed, cost, power, and 

security during design and implementation. 

B. FACTORS IN 3D ARCHITECTURE 

 In this chapter, we present the main aspects that have to be considered when 

designing a 3DIC that requires different thinking, methods, and tools than a 2DIC. These 

factors include the bonding methods, the floor plan, power and ground networks, memory 

placement, thermal issues, and testing methods. We conclude with a “straw man” design 

for our own computation plane.  

1. Bonding: Interconnection Methods 

As discussed in Chapter II, in a three dimensional 3DIC, we have multiple layers 

which are stacked together. Various interconnect technologies [6], [81] can be applied to 

the 3D integration such as wire bonding, microbumps, through-silicon vias (TSVs), die-

to-die, or contactless interconnection. 

A common approach is wire bonding [81], where wires connect each die in a stack 

within a processor package. In this process, wires emerge from the I/O contacts on 

periphery of each die but are contained within the package. This approach is limited by 

the resolution of wire bonders and becomes more complicated as the number of I/O 

contacts in the chips increase. Wire bonding is not considered a true 3D technology 

because it does not provide the spatial locality advantages of TSVs, due to the fact that 

signals passing between layers must travel to and from the peripheries of their respective 

dies. 

Another interesting approach is microbump technology [81]. This process uses 

either solder or gold bumps, placed on the surface of the die, to provide the required 

connections. The pitch of these bumps varies from 50 to 500 μm, although in some cases 

smaller sizes are possible. The mechanical stresses applied during the assembly process 

are significantly lower than wire bonding. Since the bumps only require the top one or 

two metal layers, the remaining layers are available for routing and devices. This specific 

3D-packaging approach provides an enhanced vertical interconnect density compared to 

the wire-bonding approach. On the other hand, it does not reduce in a significant way the 
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parasitic capacitance, because as, is stated by Davis et al., “a microbump bonded cube 

must still route signals to the periphery before sending them back to the destination inside 

the cube” [81]. This 3D packaging method enables one or more chips, fabricated under 

diverse technologies, to be joined into a single unified stack. 

According to Davis et al., through-silicon via interconnection offers the greatest 

interconnect density, but this comes at a higher cost [81]. TSVs (through silicon vias) 

enable the highest vertical interconnect density. TSVs are short vertical wires used to 

connect planar wires. In face-to-face bonding, one layer is placed face down onto the 

second wafer, which is facing up. Alternatively, layers can be stacked face to back, but 

this requires TSVs to pass through the bulk silicon. Note that face-to-face bonding only 

allows a maximum of two layers in the stack; face-to-back bonding is required for more 

than two layers. Face-to-face vias are smaller than the TSVs used in the face-to-back 

bonding process; however, TSVs are still required to support I/O through the top layer. 

The maximum number of layers that can be stacked in a face-to-back configuration is an 

open research question. Needless to say, more layers in the stack present greater 

challenges and higher costs. Note also that dies can be bonded in a wafer-to-wafer, die-to-

die, and die-to-wafer fashion. Furthermore, TSVs can be manufactured using a via-first 

approach, where the vias are made prior to making the devices and the wires; or via-last, 

where the vias are added after the devices and wires are made. Via-first is more expensive 

than via-last but allows smaller via sizes. 

The process of making via-last involves drilling holes from the upper wafer to the 

lower and then filling the holes with tungsten to provide connectivity. As described by 

Loh et al., current fabrication technologies are capable of providing die-to-die via pitches 

within a range of 10 μm x 10 μm to 1 μm x 1 μm [6]. Figure 66 depicts a cross-sectional 

view of the die-to-die interface. The die-to-die vias [17] are placed on the top of the metal 

stack of each die and are bonded after alignment. They are differentiated from I/O pads, 

and their size and electrical characteristics are similar to vias used to connect on-die metal 

routing layers. Last year, IBM managed to reduce the via pitch to 0.2 μm x 0.2 μm 

through silicon-on-insulator (SOI) technology [82]. With this technology, as described by 
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Davis et al., we can “avoid the need for passivating the hole by polishing the substrate 

away completely, down to the buried oxide” [81].  

 

Figure 66. Cross-sectional view of the die-to-die interface for face-to-face and face-
to-back bonding arrangements (From [6]). According to the position of the metal 
layers of the upper die relative to those of the lower die, the bonding process is 

either face-to-face, where the metal layers of the two die face each other, or face-
to-back, where the metal layers of the lower tie touch the bulk silicon of the upper 

die [6]. 

Another method of connecting 3DIC layers is contactless interconnection, which 

involves the use of capacitive or inductive coupling for the communication between 

layers [81]. As described by Davis et al., “this approach eliminates the processing steps 

for creating inter-layer DC connectivity and eliminates the need to route signals to the 

periphery, allowing for reduced wire lengths” [81]. Also, due to the fact that the 

contactless approach requires only a minimum amount of processing for chip thinning, 

which consequently minimizes the complexity of fabrication process, the manufacturing 

cost is significantly less as compared to the manufacturing cost of approaches that use 

microbumps and through-silicon vias. 

Figure 67 illustrates the interconnect technologies described above.  

 

Face-to-face bonding                 Face-to-back bonding

At device layer, d2d size is small to 
minimize impact layout

At bonding interface, d2d size must 
be large enough for proper 
alignment
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Figure 67. Illustration of Vertical Interconnect Technologies (From [81]). Wire 
bonding (top left): wires connect each die in a stack. Micro bumps (top middle and 

top right): solder or gold bumps, placed on the surface of the die provide the 
required connections. Contactless (middle row): involves the use of capacitive 
(middle left) or inductive (middle right) coupling for communication between 
layers, Through-silicon via (TSVs) (bottom row): Short vertical wires between 

layers of interconnect, used to connect the planar wires. Their size varies from 50 
μm to 1μm. With the implementation of silicon-on-insulator (SOI) technology 

(bottom right), the pitch of vias reduced to 0.2 μm x 0.2 μm. 

Illustration of Vertical Interconnection Technologies

Wire-bonded Micro-Bump --
3D Package

Micro-Bump --
Face-to-Face --

Contactless: Capacitive with buried bumps Contactless -- Inductive

Through-Via -- Bulk Through-Via -- SOI
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2. Manufacturing Methods 

 There are two primary methods of manufacturing three-dimensional (3D) chips 

with respect to wafer level stacking: the “bottom-up” and the “top-down” fabrication 

methods [83], [85].  

The bottom-up wafer-fabrication method [84], [85] builds a multi-die processor in 

a manner similar to how multistory buildings are constructed. Each die has several 

internal layers for devices, interconnects insulation etc. For 3DICs built using the bottom-

up method, the first die is constructed and each of the layers is laid down. Next, the 

second die is constructed, along with its layer, and so on. According to Euronymous, a 

significant drawback of this method is that it is difficult to make changes to the design of 

one of the die without affecting the entire stack [84]. However, a significant advantage of 

this method is that the size of the inter-layer vias can be reduced because the size of the 

transistor devices is reduced.  

With the top-down wafer fabrication method [84], [85], each die is manufactured 

separately, and all the manufactured dies are bonded together at the final stage. This 

method has significant advantages. First, the certification and testing process is more 

accurate, due to the fact that each die can be tested independently. Thus, the final step 

bonds layers that have already been tested and certified. Another advantage is that this 

method allows diverse layers, manufactured using heterogeneous processes and optimized 

to a specific purpose, to be joined into a single unified stack. For example, one layer could 

be optimized for computation and another for sensing light. However, a disadvantage of 

the top-down method is that the size of the inter-layer vias cannot scale with the transistor 

devices. Nevertheless, this fabrication method is less costly, due to the fact that it is easier 

to make changes to an individual die without affecting the rest of the stack. 

The top-down method encompasses the face-to-face and the face-to-back methods. 

In the face-to-face method [84], the metal layers of each die are stacked facing each other, 

and their interconnect layers are connected using die-to-die vias. On the other hand, in the 

face-to-back method [84], all layers in the stack have the same orientation. The distance 

between layers is larger, and the TSVs are longer and thicker than die-to-die vias used in 

face-to-back bonding, as they must pass through bulk silicon to reach the metal layers of 
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the next die. Face-to-back topology provides better scalability and can be adopted for 

architectures requiring more than two layers. In our proposed architecture, we have 

selected the face-to-face bonding process because we require only two layers. 

a. Face-to-Face Bonding 

  As it described by Loh et al. and depicted in Figure 68, the fabrication 

steps for a face-to-face, top-down construction are as follows [6]: 

1. We have the two processed wafers. 

2. Copper via stubs are connected to the top level metal areas of the dies. 

3. After the face-to-face alignment of the two wafers, they are joined using 

thermo compression. The total area between two dies will be completely 

populated by die-to-die vias. These vias serve the following needs: they 

provide a path for I/O signals, power, and ground, they are good 

conductors for dissipating heat in the 3DIC, and they support the 

mechanical connection of the two dies. 

4. With the use of chemical–mechanical polishing (CMP), one layer of the 

stack is thinned from 10 to 20 μm. 

5. The thinning process allows the through-silicon vias (TSVs), which 

provide the external I/O signal, power, and ground connections, to be 

relatively short.  

 

Figure 68. Fabrication steps for face-to-face bonding (From [6]). 
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b. Face-to-Back Bonding 

 As described in [6] and depicted in Figure 69, the fabrication steps for a 

face-to back, top-down construction are as follows: 

1. We have the two processed wafers. Before thinning the wafer, it must be 

attached to a handle wafer. 

2. With the use of chemical–mechanical polishing (CMP), the wafer is 

thinned to about 10 to 20 μm. The handle wafer provides mechanical 

support to the thinned wafer and prevents it from being broken. 

3. The two halves of the die-to-die (d2d) vias are joined. The process of 

constructing the via stubs, with respect to the face wafer, is similar to the 

face-to-face process. With respect to the back wafer, the vias are etched in 

a way similar to the face-to-face vias, which provide signal, power, and 

ground.  

4. The two dies are bonded together by thermo compression. 

5. The thinned die is released from the handle wafer.  

 

Figure 69. Fabrication steps for face to back bonding (From [6]). 

C. FLOORPLAN, POWER, AND GROUND NETWORK 

 For 3DIC floor planning and power placement, several parameters have to be 

considered, the principal being thermal dissipation. Several tools for modeling placement 



 125 

that consider thermal effects have been developed, such as a tool developed by Cong et al. 

in 2004, which is a thermal-driven floor-planning algorithm for 3D ICs [85]. 

 Gabriel H. Loh et al. developed a floor planner that “takes a micro-architectural 

net list and determines the placement of the functional modules while simultaneously 

optimizing for performance and thermal reliability. The traditional design objectives such 

as area and wire length are also considered” [86]. 

 A proposal focusing on power/ground distribution and the IR drop effect (a 

voltage drop due to the resistance of the mesh) is presented by Falkenstern et al. [87] 

They use a B*-tree for floorplan representation; to represent the power and ground, they 

use a resistive mesh and a simulated annealing engine at the end. They form some 

interesting conclusions; for example, the average IR drops generally decrease if the 

designers increase the number of layers in the 3DIC, thus reducing the area in each layer. 

Because the modules are closer, taking advantage of the small horizontal distance 

provided by the stacking process, the power/ground edges are shorter, resulting in small 

IR drops. Also 3DIC allows a better distribution of modules, thus reducing the number of 

modules consuming energy from the same edge, allowing each edge to have less current, 

therefore reducing the IR drop. Those points are important because smaller IR drops 

increase the performance of the circuit [87]. 

 Gabriel H Loh et al. present some conclusions based on simulations [6]. In their 

calculations, about 30% of the die-to-die vias are used for power and ground. For face-to-

back topologies, normal pins can be used for supplying off-chip power, but when face-to-

face topologies are used, the power supply from the board to the chip must be delivered 

using TSVs. This does not present serious concerns, “because the inductance of a single 

10-mm-wide TSV is less than 2.5 pH for a single return path. Many return paths exist in a 

full chip, which further reduces the effective inductance. This additional inductance has 

little effect compared to the switching noise observed in the on-die power distribution 

networks of existing processors” [6]. 

 Suppose we have a 3DIC with half the footprint of a 2DIC. The 3D chip will 

probably use half the pins to transport power, compared to the 2D chip, doubling the 

current on those pins. Even if the 3D chip had the same number of pins, the designer 
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probably would have to double the current to support two layers of circuit. Loh et al. 

present conclusions based on simulation about the number of pins and power distribution 

that illustrate these concepts [6]. First, they conclude that the TSV can easily support the 

current increase and explain that a 3D IC does not consume the same amount of power as 

a 2D IC. Thus, having half the number of pins does not double the current density in each 

pin, because a 3D IC can reduce the power requirements due to shorter distances between 

on-chip modules [6]. 

D. MEMORY 

Memory implementation is a significant design issue and an important design 

decision in our 3DIC architecture. Many memory issues have been explored in the recent 

literature. Although we are not proposing to stack memory in our 3D architecture, we 

want to consider this issue for future analysis and improvements to our design that will 

provide the benefits of an on-chip cache. These issues include limits on the pins on both 

ends of the memory controller and the DRAM modules, as well as motherboard area 

requirements [92]. One option that was studied was to implement a method of direct 

vertical stacking of many dies of memory, one above another, all connected through TSVs 

[88], [89]. In this process, all memory dies would be constructed separately, utilizing 

either 2D SRAM or DRAM. This method offers simplicity, and only minor changes are 

required during the manufacturing process, because it is done in sequential steps. The gain 

in performance is due to the fact that on-chip buses are faster, consume less power, and 

are less capacitive [92]. IBM estimates that a 60% latency reduction is possible by using 

an on-chip DRAM [91]. Results of simulations, using Simple Scalar 4.0 in comparison 

with a baseline 2DIC with a 3GHz CPU, 750 MHz memory, 1MB L2 cache, and 8MB L3 

cache, show an average speed up of 126% over 2D implementation for floating-point 

programs and a 59% speedup for integer programs. 

Loh et al. [92] say that the above implementation does not receive a large 

performance benefit, due to the small size of the workload; therefore, they also propose 

implementing a 64-byte bus to memory, which, by itself, increases the performance to 

71.8% over the 2DIC.  
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An observation may be made about DRAM in 3D architecture [93] during the 

refresh operation. Due to the greater operational temperature of a 3DIC, it is reasonable to 

estimate that the refresh rate needed to retain data will also increase, and a proposed 

solution is the use of smart refresh, which uses a counter to refresh the required memory 

rows and banks only, saving a geometric mean of 6.87% of total energy. 

Another interesting approach is that of Sun et al., who explore the adoption of a 

coarse-grained 3D partitioning method focused on 3D DRAM design. The main purpose 

of the above method [90] is to share the global routing of the memory address and data 

bus between all DRAM dies. To achieve this, they used coarse-grained TSVs with a pitch 

in the tenths of μms. In this method, a partition of individual memory subarrays is created 

and, once they are split, distributed to all available dies. Each bank of memory is divided 

into sub-banks, where each sub-bank is divided into 3D subarray sets, where each one 

contains n 2D subarrays, including the required memory calls and the peripheral circuits. 

Using the above method in each 3D subarray set, the required 2D subarrays share only 

address and data I/O TSVs. Therefore, the total number of TSVs is reduced, and the 

global addresses can be distributed across the total number of dies, achieving the optimum 

result. 

Loh et al. explore another similar approach focused on implementing a large L2 

cache memory. They adopted a coarse-grained method to place a cache above one or 

more processor cores [6]. By placing cache memory on top, they reduced the number of 

TSVs or face-to-face vias. An enhancement uses a banked implementation, in which each 

bank can be the same as it is in a conventional 2DIC, but in the case of a 3DIC, each bank 

is stacked on top of another. The main advantage of this method is that the global routing 

can be reduced significantly. The two implementations described above are shown in 

Figure 70. 
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Figure 70. Implementing a cache in 3D (From [6]). (a) A baseline 2D processor with 
L2 cache; (b) an L2 cache stacked above the cores; (c) L2 cache banks stacked on 
each other. In Figure (1)(c), each bank can be the same as it is in a conventional 
2DIC, but in the case of a 3DIC, the banks are stacked. The advantage is that the 

global routing can be reduced significantly. The bold black arrow in each subfigure 
illustrates the reduction in interconnection length. 

Loh et al. propose other approaches geared towards a more aggressive 3D memory 

organization that are beyond the scope of this thesis [92]. 

E. THERMAL 

 Many advantages of 3DICs arise from the reduction in overall wire length. 

Unfortunately, this does not come free.  

 According to Puttaswamy et al., temperatures on 3DICs are higher than 

conventional 2DICs for three reasons [94]. First, the 3DICs suffer from a higher power 

density because the active devices are stacked vertically. Second, heat dissipation is less 

effective in 3DICs, because the temperature gradients are lower. Also, the physical path 

used for dissipation becomes significantly longer along the vertical dimension towards the 

heat sink. Finally, the area of the die in contact with the heat spreader is not large enough 

because the effective area (footprint) of each die is minimized. This leads to less efficient 

dissipation to the heat sink. Various techniques have been developed to address thermal 

issues in 3DICs. By selecting an optimal topology, it is possible to achieve a thermal 

profile similar to that of a conventional 2DIC. For example, memory can be stacked 

above the processor core [17]. This significantly reduces the number of main memory 

accesses and corresponding bus activity, which leads to a reduction in power 

consumption, and a decrease in the thermal impact. Black et al. investigate three options 

for 3D memory stacking on a base processor die (Intel Core TM 2 Duo microprocessor), 
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in which cores have private, level-one instruction and data caches of 32KB and share a 

4MB level-two cache (L2). The first option is to increase the L2 size from 8MB to 12MB 

of static random-access memory (SRAM). This implementation places the additional 

8MB L2 cache on top of the base processor die. The second option is to replace the L2 

SRAM with a larger L2 dynamic, random-access memory (DRAM), thus replacing the 

4MB L2 cache with a 32MB stacked L2 DRAM. The third option stacks a 64MB DRAM 

on top of the base processor. All the above options illustrated in Figure 71. 

 

 
 

Figure 71. Memory-stacking options (After [17]): (a) 4MB baseline; (b) 8MB 
stacked, for a total of 12MB, with an increase of the L2 size from 8MB to 12MB of 

static random-access memory (SRAM); (c) 32MB of stacked DRAM with no 
SRAM, replacing the L2 SRAM with a larger L2 dynamic random-access memory 

(DRAM), thus replacing the 4MB L2 with a 32MB stacked L2 DRAM; and (d) 
stacking a 64MB DRAM on top of the base processor. 

Thermal analysis of the proposed options demonstrates that the thermal impact due to 

stacking memory is insignificant compared with its performance and power advantages, 

as shown in Figure 72. 
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Figure 72. Temperature results for the stacked 12MB, 32MB, and 64MB memory 
options compared to the baseline 4MB (After [17]). The thermal impact of stacking 

memory is slightly greater than 2DICs. 

 Bryan Black at al. analyze and compare the power, frequency, thermal, and 

performance factors of a 2D architecture [17]. They try different combinations and 

conclude that: 

• By limiting the temperature to that of a 2D architecture, a 3DIC can achieve an 

8% increase in performance with 34% reduction in power consumption, due to 

distance and latency optimization. 

• By limiting the performance to that of a 2D architecture, a 3DIC achieves a 

reduction in power consumption of 34%. 

• By limiting the frequency to that of a 2D architecture, a 3DIC realizes an increase 

in the temperature of 14oC and a performance increase of 15%. 

Frequency and temperature play an important role in any 3D architecture. Most 

solutions for thermal issues utilize careful floor planning and a small reduction in 

processor speed, which does not reduce the overall advantage of a 3D architecture, as 

described by Loh et al.  
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“It is found that, in spite of the lower operating frequency of a 3D chip (as imposed by 

thermal concerns), the overall system performance can still be significantly better than 

conventional planar designs, especially for memory intensive applications” [101]. 

The approach of Cong and Zhang is to increase the thermal conductivity of the 

stack by inserting thermal vias [95]. According to Sapatnekar, “the temperature may also 

be reduced by improving the effective thermal conductivity of paths from the devices to 

the heat sink. An effective method for achieving this is through the insertion of thermal 

vias: thermal vias are structurally similar to electrical vias, but serve no electrical purpose. 

Their primary function is to conduct heat through the 3D structure and convey it to the 

heat sink” [96]. However, according to Hua et al., implementations using thermal vias do 

not consider the fact that they can increase routing congestion, which consequently leads 

to the use of longer interconnects and thus to a significant increase in dynamic power 

[97]. The increase in dynamic power can result in higher temperatures and power leakage. 

In [97], Hua et al. explore the mapping between dynamic power and leakage power in two 

designs, by altering the number of layers and related number of thermal vias. They used 

two case studies involving low-power and high-performance applications and evaluated 

the tradeoff described above. Their research concluded that the overuse of thermal vias 

does not significantly affect the 3DIC system performance from the increase in wire 

length. In the case of low-power applications, the thermal effect is not significant. In the 

case of high-performance applications, adopting a specific process of placement of 

thermal vias, it is possible to significantly reduce the thermal effects. 

Some other interesting approaches to dealing with thermal issues involve the 

rearranging of heat sources [96]. The locations of the heat sources can be moved through 

careful placement of components. Floor planning is one of these techniques. Hang et al. 

explore a floor-planning algorithm that reduces the peak temperatures of a 3DIC [99]. 

This algorithm is divided into two stages. First, it determines an optimum partitioning of 

the functional blocks into layers, decreasing the total wire length. Next, it reconfigures the 

floor plan of the layers that did not fully compact during the first stage.  

Another interesting research is the floor-planning algorithm of Li et al, which 

determines the optimum floor plan and placement of thermal vias. Their process is 
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performed in two steps. First, all blocks are distributed to layers, and then the number of 

vertical thermal vias required for each layer is determined. Second, the floor-planning 

process is performed to determine the optimum floor plan for each layer and the number 

of horizontal thermal vias required on each layer. Their method achieves a reduction in 

thermal vias of 15% and increases the usable area and wire length. 

 Adopting all the countermeasures against thermal effects described above, we can 

maintain the advantage of 3DICs. Puttaswamy and Loh studied the thermal behavior of a 

high-performance microprocessor built with two die and four die in a 3D technology and 

showed that the temperature increases are not as much as was previously thought.  

Techniques such as via layers, copper metallization, and modern packaging materials 

increase efficiency. Finally, 3D implementations of one conventional processor have 

thermal profiles similar to the 2D implementation. Figures 73, 74, 75 illustrate these 

findings. 

 
Figure 73. Thermal Profile of the Planar Processor (From [94]). 
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Figure 74. Thermal Profile of the Two-Die, 3D Processor (From [94]). 

 
Figure 75. Thermal Profile of the four-die, 3D Processor (From [94]). 

F. TEST 

 According to Xie, “One of the potential obstacles to 3D-technology adoption is the 

insufficient understanding of 3D testing issues and the lack of DFT solutions”[15]. This is 

due to the fact that in 3D technology, the test probing needles from the probing cards 

cannot access inside the wafers. Other challenges include thermal issues, alignment, 

bonding, and thinning. Figure 76 illustrates testing challenges in 3DIC design and the 

status of several 3DIC research challenges. 
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Figure 76. A) The role of 3DIC testing in the development process. B) status of 3DIC 
research (From [102]). 

 Lee and Chakrabarty describe problems in face-to-face bonding: “The bottom die 

has up to hundreds of thousands of copper pads, but their small size and large number 

make probing of signals difficult. The top wafer would be hard to be probed from the 

copper side, the TSVs are buried and C4 bump pads are not fabricated prior to bonding” 

[102]. With face-to-back bonding, “the top die is more testable than the bottom because 

the C4 bump pads can be fabricated on the top layer. However, the top wafer must be 

thinned, which introduces the problems of ultrathin wafer processing and limits the ease 

with which the wafer can be probed. Typically, the probe card applies weight in the range 

from 3 to 10 g per probe. Therefore, the probe weight per wafer can be as high as 60 to 

120 kg, which is a serious issue for thinned wafers” [102]. To solve these issues, research 

is underway using techniques described by Lee and Chakrabarty, such as “contactless 

testing and proximity I/O based on near-field wireless communication, inductive 

coupling, and capacitative coupling” [102]. 
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 Another significant factor in a 3D architecture is the cost and time to manufacture. 

Testing directly impacts in the total cost and time, as described by Grochowski et al.: 

“Integrated circuit (IC) testing for quality assurance is approaching 50% of the 

manufacturing costs for some complex mixed-signal IC’s” [103]. The techniques 

developed for 2D testing to reduce time and cost cannot be made efficient for 3D 

manufacturing, as described by Lee and Chakrabarty: “Modular testing, which is based on 

test access mechanisms (TAMs) and IEEE Std 1500 core test wrappers, provides a low-

cost solution to the test access problem for a System on Chip (SoC); many I/O and scan 

terminals for the embedded cores can be accessed from a few chip pins. For today’s 2D 

ICs, several optimization techniques have been reported in the literature for test 

infrastructure design to minimize test time. Similar techniques are needed for 3D ICs, but 

we are now confronted with an even more difficult test access problem: the embedded 

cores in a 3D IC might be on different layers, and even the same embedded core could 

have blocks placed on different layers. Only a limited number of TSVs can be reserved 

for use by the TAM. Although many TSVs can be integrated in a 3D IC, most are 

required for power, clock, and signal lines, and the need for a ‘’keep out’ area requires 

optimization techniques that make judicious use of TSVs for test access. Wrapper design 

and optimization must also go beyond IEEE 1500 and consider how a core on multiple 

layers can be wrapped under TSV constraints” [102]. 

 To address the testing problem, we adopt the solutions presented by Wu et al., 

using scan chains in two implementations to test the 3D-IC [104]. As scan chains can 

present challenges due to the time spent on testing, the length of the wires, and the area, 

most implementations divide the chip into smaller areas to be tested, reducing the testing 

costs.  

 The first technique applies a genetic algorithm (GA) to determine a best-path 

chain to map all the test points based on constraints, such as number of TSV, wire length, 

and scan time. The use of a GA, together with simulated annealing (SA), is the best tool 

to optimize multi-objective goals, with the advantage that a GA takes into account a pool 

of solutions to avoid local minima, as compared to just one solution computed by SA. 

This implementation uses three approaches, each with its advantages and disadvantages. 
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Approach one, Figure 77: each layer is considered an independent 2DIC, and 

using a 2D scan-chain tool, the chains are designed layer by layer, with a TSV at the end 

of one layer’s chain linking to the beginning of the next layer’s chain. 

Advantage: use of a simple 2D chain tool to design the scan chains. The number of 

TSV is minimal (n-1 TSV for n layers). 

Disadvantage: this method is optimal for each layer, but combining can lead to a 

suboptimal global design. 

 

Figure 77. Approach One (From [104]). Two independent scan chains tied together by 
only one TSV. 

Approach two, Figure 78: The cells to be scanned in all layers are projected onto 

just one plane, and a simple 2D chain tool is used to design the global scan chain. This 

approach does not take into account whether the cells are in different planes and will 

require TSVs, which can be a good design choice if the distance between layers is 

negligible. 

Advantage: use of a simple 2D chain tool to design the scan chains. 

Disadvantage: Since the TSVs are not considered, it can result in too many TSVs.  
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Figure 78. Approach Two (From [104]). All testing points are projected onto just one 
layer, and a 2D chain tool computes the scan-chain path. 

Approach three, Figure 79: This approach computes the small global chain 

considering vertical and horizontal distances. The algorithm considers the horizontal 

Manhattan distance and the vertical distances. 

Advantage: This is a true 3D scan chain that accounts for a globally optimal chain. 

Disadvantage: The 2D chain tool has to be modified in order to address the 3D 

chain.  

 

Figure 79. Approach Three (From [104]). This is a true 3D approach in which the tool 
computes the optimal path, considering horizontal and vertical distances. 

 The importance of these three approaches is that one of them is used as a 

prioritizing method (constraint) in the genetic algorithm for computing the scan chain, 

which determines the best scan chain design for testing. 
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 GAs consist of five stages: (1) formation of the original population, a random list 

of “chromosomes” (characteristics of this population); (2) execution of several rounds 

until a condition is achieved; the rounds use a fitness function (a function applied over the 

chromosomes in order to calculate some specific requirement); (3) reproduction, which 

selects the new population based on some criteria over the result of the fitness function; 

(4) a crossover step in order to exchange characteristics of different chromosomes; and (5) 

mutation, which generates the new population for the next round. 

 The GA presented by Wu et al. uses integers from 1 to N to represent all the flip-

flop cells to be tested, and the solution is a list of cells in the order visited, such that each 

node is visited just once [104]. This list is called the chromosome of the GA. The fitness 

function is calculated in order to determine the lowest wire length of the scan chain, so 

that after the reproduction phase, the best chromosomes are the ones with the lowest scan-

chain wire length. In the crossover process, sections of each winning chromosome are 

exchanged to generate new chromosomes; if during this insertion a node appears twice, it 

is deleted from the original chromosome, the mutation takes place, and a second round 

begins. 

 The second proposed test technique uses integer linear programming (ILP), which 

is a minimization of an objective linear function under a linear constraint—in this case, 

minimizing the wire length of a scan chain, given the number of TSV as a constraint. 

 We will not present all the mathematical implementation of this technique, which 

is described by Wu et al. [104]; however, we will introduce the basic concept of the 

model evaluated using Xpress-MP, a commercial ILP solver.  

 In order to use this tool we first must specify the model and insert its parameters. 

The basic model of this scan chain ILP is shown below; the step that follows this 

specification is the definition of this model in Xpress-MP tool language. We assume that 

this model has a unique path starting on node u, traveling N nodes passing through nodes 

i,j, and ending in the v node; it also is constrained in the number of TSV, which has to be 

lower than L, as shown in Figure 80.  

ILP Description, Figure 80: 
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1.  For every cell I, there is only one immediate successor per scan cell, so the 

path xij is equal to 1; 

2.  For every cell j, there is only one immediate predecessor per scan cell, so 

the path xij is equal to 1; 

3.  There is no immediate predecessor for the initial scan pin u; 

4.  There is no immediate successor for the final scan pin v; 

5.  A scan cell cannot connect to itself.  

6.  L is a constraint on the number of TSV; each step between layers is 

considered equal to one (L2 - L1 = l = 1). 

7.  If the function is nonlinear, it is replaced by a new binary variable to 

ensure proper linearization. 

8.  Cell i is either before cell j or after cell j in the chain. 

9–10.  The initial node u is before every other node, and the end node v is after 

every other node in the scan-chain. 

 

Figure 80. A visual representation of the ILP specification inserted to Xpress-MP. 

 The results from a comparison between the GA and ILP methods [104] 

demonstrated a small reduction in wire length using ILP, so we recommend that approach. 

Until no better tool is developed, the ILP method can be used for scan chain design with 

“near-optimal solutions” [104]. 

 Our proposed architecture uses face-to-face bonding, which has testing and 

accessibility advantages as described by Emma and Kursun [105]. Their method uses scan 

chains in each layer that are accessible in a boundary scan. Their method also employs an 

additional infrastructure that allows a total 3D test chain. 

u

v

i
j l = 1
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VI. THE IDEAL 3D SYSTEM 

A. INTRODUCTION 

 The main advantage of having a fully functional computational plane and a control 

plane is that the computational plane can be manufactured in an untrusted foundry, and 

security-critical functions can be implemented in a separate die that is fabricated in a 

trusted foundry. The two dies can then be joined in a trusted facility. This allows dual use 

of the commodity-computation plane, which provides economic benefits. However, it 

requires some small changes to the computational plane. 

 For example, the computational plane has to provide clock signals to the control 

plane for synchronization, and this requires the availability of die-to-die connections. The 

extra cost of modifying the computational plane is amortized across all custom, 3D 

designs using that plane [4]. 

 Now that we have presented some architectural issues, we define our proposed 

architecture in more detail. Our approach requires some changes in the computational 

plane, such as: 

• Vertical clock-signal delivery to the control plane and clock buffers to 

synchronization 

• Vertical connections for data transfer, from computational-plane registers to 

control-plane compression buffers 

• Vertical posts for control/query signals among computational and control planes 

 Our proposed architecture does not require a memory connection; the compression 

and crypto devices have their own memories. 

 We propose a two-layer IC, with a computational plane and a compression-

encryption plane stacked in a face-to-face architecture (providing the smallest possible 

distance between the layers [106]), allowing information to flow from the computational 

plane to the compression-encryption plane (control plane) as fast as possible, and with the 

die-to-die communication achieved using micro bumps that provide an enhanced vertical-

interconnection density and smaller distance, as compared to the wire-bonded method 

[106]. 
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Figure 81. The proposed architecture consists mainly of a two-layer IC, with 
computational and compression-encryption planes stacked face to face (allowing 
the smallest possible distance between the layers), allowing information to flow 

from the computational to the compression-encryption plane (control plane) as fast 
as possible. Die-to-die communication is achieved using micro bumps that provide 
an enhanced vertical interconnection density and smaller distance, as compared to 

the wire-bonded method. 

 We first place the compression coprocessor and then the crypto coprocessor in 

order to ensure the highest ratio for the compression process. According to Intel, if 

compression is done after the encryption of data, the ratio of compression will be poor, 

due to the strong stochastic properties of the encrypted data [107]. Also, by compressing 

data first, we can assist the encryption by significantly reducing the size of the data to be 

encrypted. Moreover, compression increases data entropy and enhances the efficiency of 

encryption. Finally, it provides another layer of security to the whole structure [107]. 

Control Plane

Computational  Plane
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Figure 82. First, the compression coprocessor is placed in the control plane, followed 
by the cryptographic coprocessor. 

 We recommend that the control plane use the I/O capability of the computational 

plane rather than implement its own separate capability. Die-to-die connections will 

enable this sharing. 

B. OPTIONS FOR STRAWMAN-DESIGN COMPUTATIONAL PLANE 

 Our proposed computational plane architecture has two goals. 

• Performance: comparable to other processors in the marketplace 

• Traces: allow a control plane to access the information needed to generate a 

specific set of traces to be compressed and encrypted. 

1. Performance 

 The computational plane of our proposed design has to be comparable to the most 

advanced processors offered in the market. For comparison, Intel is offering the i7-

3930K, a processor with six cores that handles twelves threads simultaneously, running at 

3.3 GHz, with a 12 MB cache and a 64-bit instruction set, in a 32 nm lithography. The 

memory is accessed using four memory channels, at a rate of 21 GB/s. The temperature of 

the case is about 162.7 oF (72.6 oC), and the package measures 58.5 x 51 mm [108]. 

Computational  Plane

Control Plane
Compression
co processor

Cryptographic
co processor
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2. Traces 

 Our design is also influenced by the traces we want to generate. It is impossible to 

track all registers in a processor, especially in hyper-threading processors where threads 

run in parallel, due to the giant amount of information that is processed per unit of time. 

We have to decide carefully what has to be monitored, e.g., by choosing registers 

carefully. 

 As an example of the complexity involved, consider memory buses. We can 

access all data being stored or retrieved, but data by itself has no meaning without the 

instructions being executed, as described in Chapter III, Trace Compression. Along with 

the “where to collect the traces” the other question is “when to collect it.” The basic 

fetch–decode–execute cycle has, for example, twenty-four stages in the Pentium IV [108] 

including, for instance, stages that determine the length of the instruction. 

 Mysore et al. propose a 3D hardware approach to dynamic program analysis: “In 

order to ensure that the profiling hardware will be flexible enough to perform a wide 

variety of analysis methods, we need to capture many different signals” like memory 

addresses (64 bits), memory values (64 bits), program counter (64 bits), opcodes, register 

names, register values, cache miss, branch miss, and TLB miss. This set of signals gives 

an estimate of the number of inter-die vias or “direct wires that need to be accommodated 

for all relevant information to be passed on to an analysis engine.” Based on the 

requirements given, they estimate that 1024 bits of profile data will be generated each 

cycle, which will in turn require 1024 inter-die connections.” [109] 

 One obvious place to monitor is the control unit, collecting information from the 

program counter register, which holds the next instruction address, the status register that 

contains information such as overflows, and the instruction register that holds the next 

instruction to be executed. The control unit controls cores and threads using control 

signals. Those signals can be collected to keep track of what each core is executing. Four 

cores can be identified by two bits each. Data addresses are also important information 

that can be combined with PCs for debugging and behavior analysis. 

 With Intel’s hyper threading, each core executes two threads [110], so adding one 

extra bit can identify the two threads in each core, resulting in three identification bits that 
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help keep track of what core and thread is accessing the referenced data during a given 

clock cycle, making it possible to closely inspect each process. 

 In Chapter III, 2D Compression Hardware, we described traces consisting of 

program counters, branch target addresses, exception-handler target address, and data 

address. In general, program counters and data addresses are present in all traces that deal 

with program debugging and behavior analyses; therefore, program counter (PC), data 

address, and the special core/thread identification (CTID) are a good set of fields to 

consider, resulting in a 131-bit trace (64 bits PC + 64 bits Instruction + 3 bits CTID) for 

each core. For the purpose of this thesis and based on the previously presented 

architectures from the literature, we will consider traces containing a 64-bit PC and a 64-

bit data address, resulting in a 128-bit trace. 

 This architecture requires 128 direct links (128 bits) between the computational 

and control planes to access (using taps) the PC (64 bits) and memory-address registers 

(64 bits). Those direct links will be accessible at the computational plane’s face to be 

bonded with 128 direct links in the control plane’s face, in which wires will carry signals 

to the trace compression hardware. No bus is used, because we are proposing a face-to-

face architecture in which the distances between dies are minimal. Even the 

Hypertransport bus requires additional implementation costs, and is also slower than 

direct links. 

 Figure 83 presents the basic layout of the computational plane, showing the 

control unit of a microprocessor where PCs are stored, memory address register, cache 

memory, clock (used to distribute clock signals for the synchronization of computational 

plane with control plane and compression coprocessor with cryptographic coprocessor), 

I/O interface, and I/O controller to handle I/O requirements for both planes. We send the 

compressed and encrypted traces back to the computational plane to avoid the need for a 

new I/O structure in the control plane. 
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Figure 83. Layout of the computational plane, showing the control unit, memory 
address register, cache memory, clock unit, I/O interface, and I/O controller to 

handle I/O requirements for both planes. 

C. CONTROL PLANE REQUIREMENTS 

 The control plane needs to be synchronized with the computational plane to 

establish a trusted communication. The main components of the control plane are the 

microprocessor interface described in the interface requirements, the compression 

coprocessor, and the crypto coprocessor. 

 The control plane also uses buffers, since, according to Milenkovic et al., “Internal 

buffers ensure that the trace compression proceeds without stalling the processor and 

without dropping data” [111]. 
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D. INTERFACE REQUIREMENTS 

 Not only does data need to be transferred between layers, but also clock signals 

and query/control signals. We now discuss how to perform this distribution and what 

signals will be required. 

1. Query/Control Signals 

 The query and control signals are managed by a microprocessor interface in the 

control plane; this interface receives a clock signal, read/write signal, address/data byte, 

and has externally accessible registers to receive/send the signals. The proposed registers 

are error, status, interrupt, command, and reset.  

 The read/write signal consists of a simple positive/negative signal, positive 

meaning write, and negative meaning read. The address/data signals consist of one byte; 

the two most significant bits addresse the specific interface register, according to the 

signal purpose. The next bit defines whether the signal is for the compressor or the crypto 

hardware; and the next five bits are the instruction being transmitted, for a total of 32 

query/control instructions for each coprocessor. Figure 84 shows the proposed interface, 

and Table 14 has the proposed signals. 

 When a write signal is received, the interface sends back an “ack” signal to the 

microprocessor and two coprocessors, reads the two address bits, and writes the next six 

bits of data to the appropriate register (error, status, interrupt, command or reset). While 

receiving the “ack,” the compression hardware constantly monitors those registers for a 

starting bit instruction that equals 0, and the crypto hardware monitors for a starting bit 

instruction that equals 1. The communications are synchronized by the clock signal and 

are shown in Figure 85 when reading signals and in Figure 86 when writing signals to the 

control plane. 
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Figure 84. The query and control signals are managed by a microprocessor interface 
in the control plane; this interface receives a clock signal, read/write signal, 
address/data byte, and has externally accessible registers to receive/send the 

signals. The proposed registers are error, status, interrupt, command, and reset.  
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QUERY/CONTROL SIGNALS 

Signal Description 
Binary form of signal 

Register register 
address 

compr/cr
yto data 

1 BUSY While data transfer occurs 00 0 00000 Status 

2 HOLD HOLD command from 
microprocessor 00 0 00001 Status 

3 BYPASS No compression/decompression 
settled 00 0 00010 Status 

4 ERROR Any error from error register 00 0 00011 Status 

5 INPUT BUFFER 
OVERFLOW Input buffer overflow 01 0 00100 Error 

6 ERROR 2 reserved 01 0 00101 Error 
7 ERROR 3 reserved 01 0 00110 Error 
8 ERROR 4 reserved 01 0 00111 Error 

9 ERROR INTERRUPT Reading ERROR on status register 
and then error register 10 0 01000 Interrupt 

10 DONE INTERRUPT No input data, no error and no hold 
signals 10 0 01001 Interrupt 

11 HOLD INTERRUPT Reading HOLD on status register 10 0 01010 Interrupt 

12 INTERRUPT 4 reserved 10  01011 Interrupt 
13 HOLD Hold compression 11 0 01100 Command 
14 RESUME Resume compression 11 0 01101 Command 

15 START 
COMPRESSION Start compression 11 0 01110 Command 

16 START 
DECOMPRESSION Start decompression 11 0 01111 Command 

17 RESET 
COMPRESSION 

Clear compression buffer and 
registers 11 0 10000 Command 

18 MODE 1 reserved 11 0 10010 Command 

19 MODE 2 reserved 11 0 10010 Command 

20 CRYPTO 
READY 

Manages the synchronization of the 
coprocessor in order to receive data.  
It also controls the flow of data. 

11 1 00000 Command 

21 CRYPTO 
SEND 

1. Manages the synchronization of 
the coprocessor in order to send data. 
It also controls the flow of data. 
2. Used also as a halt signal. 

11 1 00001 Command 

22 AES_en Selection of AES-128 cryptographic 
algorithm. 11 1 00010 Command 

23 SHA1_en Selection of SHA_1 cryptographic 
algorithm. 11 1 00011 Command 

24 SHA512_en Selection of SHA_512 cryptographic 
algorithm. 11 1 00100 Command 

25 MODE Selection of mode CBC or ECB for 
AES-128. 11 1 00101 Command 

26 KEY Key indication 11 1 00111 Command 

27 RESET CRYPTO Reset signal 11 1 01000 Command 

Table 14.   Control / Query signals 
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Figure 85. One: the microprocessor sends a write request (control). Two: the interface 
sends back an “Ack” signal to the microprocessor and the two coprocessors. Three: 

the interface reads the register address and opens the connection to this register. 
Four: data is written into the register to be read by the coprocessors. Each 

coprocessor will read and interpret the signal in the respective I/O interface. 
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Figure 86. One: the microprocessor sends a read request (query). Two: the interface 
sends back an “Ack” signal to the microprocessor. Three: the interface reads the 
register address and opens the connection to this register. Four: data is read from 

the register by the microprocessor. 
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2. Clock Signals 

 For the synchronization of the microprocessor and the two coprocessors in the 

control plane, we use a clock unit with a three-level buffer clock distribution network. 

The buffer system provides the proper current to drive the network capacitance in 

conjunction with the maintaining of high quality waveform shapes (to achieve short 

transmission times) [112]. 

E. COMPRESSION HARDWARE PARAMETERS 

 Compressing traces in real time inside the chip, even in a 3D architecture, requires 

some parameters to be considered, such as trace format, algorithms, and their required 

memory (so that the area fits in the control plane), while achieving high speed and a high 

compression ratio. 

 For the trace format, this thesis will consider traces recording memory access 

behavior, where each entry consists of program counter (PC) and the respective data 

address of the memory access. Both fields have 64 bits. Our decision is based on the 

hardware implementations from the literature described in Chapter III and the importance 

of these fields, as described by Milenkovic et al. “Instruction and data address traces are 

invaluable for quantitative evaluations of new architectures as well as for workload 

characterization, performance tuning, testing, and debugging” [111]. 

 Our proposed architecture employs content addressable memories (CAM) into all 

memories, due to the high speed required, as described in the X-MatchPRO research, 

“that uses a CAM-based dictionary where multiple symbols are processed per cycle to 

deliver the required performance to avoid becoming a bottleneck in a system operating at 

a gigabit per second bandwidth” [28]. In a CAM, multiple comparisons can be made in 

parallel, allowing all 128 bits of trace data to be manipulated, given enough space for a 

CAM of this size. 

 We have selected two-stage compression because multiple-stage compression 

hardware has a better compression ratio and higher throughput than single-stage 

compression, as explained in Chapter III, due its ability in eliminate unnecessary data 

before compressing it with a general-purpose compressor like GZIP. The two stages focus 
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on different redundancy properties in the traces: prediction methods consider context, 

while dictionaries do not. Therefore, we propose to combine both into one architecture. 

 The more specialized the compression hardware, the better the compression ratio, 

but some level of generality is needed for multipurpose compression hardware. Therefore, 

we choose to use a first stage consisting of a compressor that uses the FCM algorithm 

dealing with strides (DFCM). “Originally used in software-based trace compression, the 

finite-context method (FCM) exploits sequential locality when sets of instructions are 

repeatedly executed. Based upon the n number of previously executed instructions, a 

prediction of the next instruction is made.” We prefer the DFCM because “DFCM 

predictors are often superior to FCM predictors because they warm up faster, make better 

use of the hash table, and can predict values that have never been seen before. In addition 

to predicting long arbitrary sequences of values that repeat, DFCMs can accurately predict 

long arbitrary sequences of offsets (between consecutive values) that repeat” [38].  

 For the second stage, we propose the use of GZIP compression hardware, 

presented in [114]. See Figure 87. The reasons for this choice are based in the fact that 

“there are multiple versions of LZ compression; LZ77, LZ78 and LZW being the most 

common. LZ78 and LZW both generate better compression over a finite bit stream 

compared to LZ77. However, LZ78 and LZW both utilize static dictionaries. For this type 

of design, a look-up table holding the recurring symbols is required. Using a look-up table 

to decompress data would result in higher hardware requirements for the LZ78 and LZW 

algorithms. On the other hand, LZ77 utilizes a dynamic dictionary and, as a result, has a 

smaller impact on the memory required for decompression” [114]. GZIP is also a free 

algorithm, and implementations are available in the marketplace. “AHA’s current product 

offering includes GZIP hardware compression boards that are based on the PCI-e 

standard. The hardware architecture runs GZIP compression orders of magnitude faster 

than compression software currently available on the market, (…) the AHA367-PCIe 

board has four channels for a total throughput of 1.26 GByte/s” [115]. 
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Figure 87. The stream is initially compressed using an LZ77 algorithm “which 
produces flags, literals, match distances and match lengths (After [114]). The 

literals and match lengths {0,….,285} are encoded by one Huffman tree, and the 
match distances {0,. . . ,29} are encoded with separate Huffman trees: the dynamic, 

literal-length Huffman tree (DLLHT) and the dynamic, offset Huffman tree 
(DOHT), or the static, literal-length Huffman tree (SLLHT) and the static, offset 
Huffman tree (SOHT). Once the two dynamic Huffman trees have been created, 
GZIP determines whether compressing the block of data with dynamic or static 

Huffman trees will produce a higher compression ratio. If dynamic Huffman 
compression is beneficial, then a representation of the DLLHT and the DOHT must 
occur at the beginning of the block to be able to reconstruct the Huffman trees for 

decompression purposes, and a third dynamic Huffman tree (second-stage 
Huffman) needs to be created with the alphabet {0,. . . ,18} to compress the output 
of DLLHT and DDHT trees. If a static Huffman tree was used, it is not necessary 

to output any tree since the decompressor has access to the static codes” [114]. 

 The compression hardware has to be able to fetch 128 bits in each clock cycle, and 

also includes an input FIFO buffer in order to not stall the microprocessor and absorb 

speed variations due to prediction “warm up” times. The I/O interface receives the 6-bit 
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control signals and writes back status signals. It also receives and distributes the single 

clock signal required and controls the buffer input.  

 Due to the requirements of our proposed crypto coprocessor architecture, we must 

slice (i.e., buffer) the output into 32 bits data to be encrypted. At the end of the first 

compression cycle, the compression coprocessor sends the “SEND” signal to the crypto 

coprocessor via the microprocessor interface and waits for the “READY” signal in order 

to start the encryption of these data. 

 The compression architecture is presented in Figure 88. 
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Figure 88. Traces arrive at the compression coprocessor via a FIFO input buffer. All 
128 bits are received in parallel for speed reasons. They are received on the first 

clock signal after a “start compression” signal is received. Each trace is then sent to 
different DFCM compression hardware to be transformed into streams. All DFCM 
compressors share the same CAM, which is divided virtually among them. DFCM 

predicts the trace based on context and strides. Those predictions are sent to 
comparison hardware that compares it with the actual data being processed. If a 

match occurs, the address of the prediction is output to the stream. Otherwise, the 
uncompressed trace is output together with a miss flag. Predicted and non-predicted 
traces are combined into a single stream that is input to the GZIP hardware. After 

being compressed, traces are sliced into 32-bit chunks and sent to the crypto 
coprocessor. 

F. CRYPTO PARAMETERS 

 As described in Chapters II and IV, our crypto coprocessor is inspired by the 

HSSec cryptographic coprocessor [62]. The cryptographic coprocessor receives the 

“SEND” control signal from the compression coprocessor via the microprocessor 

interface in order to be ready to accept the compressed data. The cryptographic 
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coprocessor receives the “SEND” signal at the same time as it receives the 32-bit 

compressed data stream. Moreover, the cryptographic coprocessor sends back to the 

compression coprocessor the “READY” signal via the microprocessor interface, in order 

to handle the synchronization with the compression coprocessor and start receiving 

compressed data to be encrypted. The selection of cryptographic algorithm to be used for 

the encryption is indicated with the control signals, ‘AES_en” and “MODE” for the AES-

128 algorithm or “SHA1_en” or “SHA512_en” for the SHA1 or SHA512 algorithms. 

These signals in addition to the “KEY” and “RESET” signals, are transmitted from the 

microprocessor through its interface to the HSSec cryptographic coprocessor. The 32-bit 

output is compressed, and the final data stream is handled by the I/O controller and two 

I/O interfaces. One of the I/O interfaces is placed in the computational plane, and the 

other is placed in the cryptographic coprocessor in the control plane.  

 

 

Figure 89. The cryptographic coprocessor architecture utilized for the 3DIC (After 
[62]). 
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 The control unit manages data processing and communication with the 

compression coprocessor and microprocessor interface. Cryptographic primitives (AES-

128, SHA-1, and SHA-512) are arranged in a parallel orientation and utilize a common 

64-bit global data bus. The key scheduler block is used for key expansion and generating 

message schedules. The memory block consists of a register file, padding unit, and S-

boxes. The mode interface is responsible for modifying the input to the cryptographic 

primitives. The key scheduler performs the RotWord and SubWord transformations 

described in Chapter IV. The key scheduler also provides constants needed by the hash 

functions: SHA-1 uses a sequence of eighty constant 32-bit words, and SHA-512 uses a 

sequence of eighty constant 64-bit words. 

 The overall architecture is presented in Figure 89. 

 

Figure 90. Block diagram showing the integration of the computation plane, 
microprocessor interface, compression unit, and cryptographic unit into a full 

system 
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VII. RESULTS SUMMARY 

A. SUMMARY 

 In the previous chapters we explored the architecture and the design of 3DICs. We 

presented the advantages and challenges of this emerging technology. Moreover, we 

explored the various compression and cryptographic features, as well as related 

algorithms and their efficiency and performance. In Chapter VI, we proposed a two-layer 

IC, with a computational plane and a compression-encryption plane stacked in a face-to-

face fashion, allowing the information flow from the computational plane, where a 

general-purpose processor is placed, to the control plane, where compression-encryption 

circuitry resides. The die-to-die communication is achieved using micro-bumps, which 

provide enhanced vertical interconnect density and small distance as compared to the 

wire-bonded method. The main application that is supported by our proposed 3DIC is one 

that performs real-time trace collection, compressing the trace and then encrypting the 

compressed trace (data), protecting it from interception. 

B. CONCLUSIONS 

 The 3DIC containing a general-purpose processor and coprocessors for 

compression and encryption provides the following advantages: 

• The average interconnection wire length is reduced significantly, as compared to a 

traditional two-dimensional (2D) design; therefore, the overall performance of the 

system is enhanced. 

• Without a bus width limitation for uncompressed data, the proposed architecture is 

able to collect more data per unit time using direct links, compress and encrypt it, 

and then use a common off-chip bus. 
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• Due to the decrease in the average interconnection length, which consequently 

leads to a reduction in total wiring, we can achieve less power consumption for 

our proposed 3DIC.According to Huffmire et al., placing a cryptographic 

coprocessor in the control plane and decoupling its operation from the 

computational plane is an example of a secure alternate service (SAS), which 

provides “a trustworthy enhancement or alternative to the service provided in the 

computational plane” [3]. 

• By placing in the control plane both the compression coprocessor and the crypto 

coprocessor (with the output of the compression coprocessor connected to the 

input of the crypto coprocessor), we can enable a higher compression ratio than in 

the opposite configuration. According to Elbaz et al., if compression is done after 

the encryption of data, the ratio of compression will be poor, due to the strong 

stochastic properties of the encrypted data. Also, by compressing data first, we can 

enhance the encryption performance by significantly reducing the size of the data 

to be encrypted. Moreover, compression increases data entropy and therefore 

enhances the efficiency of encryption. Finally, it provides another layer of security 

to the whole structure [107]. 

• Another advantage of a 3D approach is that the computational plane can be 

manufactured in an untrusted foundry and the control plane can be manufactured 

in a trusted foundry. The two dies are joined in a trusted facility. Dual use of the 

computational plane provides economic benefits, but requires small changes to the 

plane. Fortunately, these changes are amortized over all custom 3D designs that 

use the same modified computation plane.  

• The reduction in power consumption can allow the use of longer encryption key 

lengths (e.g., AES-192 or AES-128). Therefore, we can enhance the security of 

the encrypted data without suffering greater power consumption. 

C. ANALYTICAL RESULTS SUMMARY 

 Although we are not building a hardware prototype, for simulation purposes we 

used software to evaluate different algorithms to confirm or refute our architecture 

choices. The software collects traces of Linux program execution, applies the DFCM 
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algorithm in the first compression stage, and applies the GZIP algorithm in the second 

compression stage. We measure compression performance in terms of compression ratio. 

 To perform this experiment, we used a trace file capturing the memory access 

behavior of five Linux applications, generated using the Pin dynamic binary 

instrumentation tool. We also used TCGen, which, given the trace file’s format, generates 

working C code and can apply four different algorithms and vary each algorithm’s 

configurations. In our analysis, we used a total of 112 configurations. TCGen also allows 

the use of a second compression stage. In our analysis, we used only GZIP because of the 

advantages explained in Chapters III and VI. 

 The traces consist three fields: instruction counter, program counter, and data 

address. We used only two: the program counter and data address, for the reasons 

explained in Chapter VI. The traces were collected from the execution of five Linux 

programs—GIMP, Open Office, Opera, Firefox, and Mozilla—using the Pin dynamic 

binary instrumentation tool developed by Intel and freely available to the public.  

 The algorithms compared are the differential finite-context-method (DFCMx[n]), 

finite-context-method predictor (FCMx[n]), stride predictor (ST[n]), and last n values 

predictor (LV[n]), all described in Chapter III. We vary n and x for each algorithm from 1 

to 7, making all combinations as shown in Table 14.  

 The results are expressed in terms of percentage of good predictions, i.e., the 

number of times an algorithm can correctly predict the next input. Although this is not the 

only factor that affects compression (see Chapter III), the percentage of good predictions 

is strongly related to it. All algorithms run independently, and the value unpredictable is 

the number of traces that no algorithm could predict. 

 Our objective is to find the algorithm that most often yields a correct prediction 

(and therefore has a better compression ratio) and use it to guide our selection of 

compression hardware for our proposed design 
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ALGORITHM n 
1 2 3 4 5 6 7 

DFCM7[n]        
DFCM6[n]        
DFCM5[n]        
DFCM4[n]        
DFCM3[n]        
DFCM2[n]        
DFCM1[n]        

FCM7[n]        
FCM6[n]        
FCM5[n]        
FCM4[n]        
FCM3[n]        
FCM2[n]        
FCM1[n]        

ST[n]        
LV[n]        

Table 15.   Table used to collect the percentage of good predictions made by different 
algorithms: differential finite-context-method (DFCMx[n]), finite-context-

method predictor (FCMx[n]), stride predictor (ST[n]), and last n values 
predictor (LV[n]), varying x and n from 1 to 7. 

 The method in Table 15 was applied to each of the two fields of each of the five 

program traces. Then the results from the same fields in different program traces were 

combined and the mean was calculated, resulting in one performance graph for each field. 
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program/trace field First step Second Step Result 

GIMP field one Run 112 algorithms 
Compute the mean of each 

one of the 112 

algorithms/configurations 

on field one 

Output a graphical 

representation 

Open Office field one Run 112 algorithms 
Opera field one Run 112 algorithms 
Firefox field one Run 112 algorithms 
Mozilla field one Run 112 algorithms 
GIMP field two Run 112 algorithms 

Compute the mean of each 

one of the 112 

algorithms/configurations 

on field two 

Output a graphical 

representation 

Open Office field two Run 112 algorithms 
Opera field two Run 112 algorithms 
Firefox field two Run 112 algorithms 
Mozilla field two Run 112 algorithms 

Table 16.   The methodology of trace compression and analysis was applied to each of 
the two fields of each of the five program traces. Then the results from the 
same fields of different program traces were combined and the mean was 

calculated, resulting in one performance graph for each field. 

 The resulting graph in Figure 93 for field one (program counter) shows that 

DFCM1[n] is the best algorithm for this specific field, especially when n is greater than 

five, with 70% good predictions. If memory is a concern, the best algorithm is DFCM1[n] 

with n equal to one, with 53.6% good predictions. This result validates our design choice 

of DFCM for the compression hardware, with a performance of, at most, 70% good 

predictions. The same is not true of field two, for which the best algorithm is FCM1[n]. 

The best result occurs when n is equal to four, with 46% good predictions. This result 

shows that in general, data addresses do not have a fixed stride and the differential 

property of DFCM is not contributing. Therefore, we recommend the use of an FCM 

algorithm for data addresses, with a performance of, at most, 46% good predictions. 

 



 164 

 

Figure 91. Program Counter: The DFCM1[n] algorithm is the best algorithm for this 
specific field, especially when n is greater than five, with 70% good predictions. If 

memory is a concern, the best algorithm is DFCM1[n] with n equal to one, with 
53.6% good predictions. This result confirms our design choice of DFCM, with a 

performance of, at most, 70% good predictions. 
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Figure 92.   Data Address: The FCM1[n] is the best algorithm for this specific field. 

The best result is when n is equal to four, with 46% good predictions. This result 
shows that data addresses do not have fixed stride and the differential property of 
DFCM is not contributing. Therefore, we recommend using a FCM algorithm for 

data addresses, with a performance of, at most, 46% good predictions. 

 The resulting output of this phase for each program trace was then sent to the 

second compression stage, based on GZIP (see Figure 92), and the final compression ratio 

was compared against a single compression stage, consisting only of GZIP (see Table 16), 

to determine and quantify whether our two-stage proposal is more efficient than a single-

stage one. 
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program / trace field First step Second Step Result 

GIMP field one 

Run best algorithm 

plus GZIP 

Compare compression ratio of 

the two-stage architecture with 

one-stage architecture and also 

obtain the mean compression 

ratio 

Output a graphical 

representation 

Run GZIP 

Open Office field one 
Run best algorithm 

plus GZIP 

Run GZIP 

Opera field one 
Run best algorithm 

plus GZIP 

Run GZIP 

Firefox field one 
Run best algorithm 

plus GZIP 

Run GZIP 

Mozilla field One 
Run best algorithm 

plus GZIP 

Run GZIP 

GIMP field Two 
Run best algorithm 

plus GZIP 

Compare compression ratio of 

the two-stage architecture with 

one-stage architecture and 

obtain the mean compression 

ratio 

Output a graphical 

representation 

Run GZIP 

Open Office field Two 
Run best algorithm 

plus GZIP 

Run GZIP 

Opera field Two 
Run best algorithm 

plus GZIP 

Run GZIP 

Firefox field Two 
Run best algorithm 

plus GZIP 

Run GZIP 

Mozilla field Two 
Run best algorithm 

plus GZIP 

Run GZIP 

Table 17.   The resulting output of the first phase for each program trace was then sent 
to the second compression stage, based on GZIP, and the final compression 
ratio was compared against a single compression stage, consisting only of 

GZIP. 

 The mean compression ratio for the five program traces on field one shows that 

our two-stage proposal (DFCM + GZIP) has a slight advantage over a single GZIP stage. 
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Although this performance may not justify the cost of the architecture, using two-stage 

compression can speed up the process by pre-compressing traces with a trace-specialized 

tool before sending it to a general-purpose compressor; also, the power and memory 

required for the general-purpose compression can be reduced, due to the pre-compressing 

unit. For the second field, GZIP alone performs better, with a compression ratio of 33:1, 

compared with 25:1 for our proposed design. The two graphs show that the performance 

of the first stage has to be around 70% (as in the first field) to effectively contribute to the 

overall compression ratio.  

 The first compression stage’s algorithm has to be carefully chosen and optimized 

for the specific trace being compressed; otherwise, it will be better to use a single-stage 

approach. A way to deal with this problem is a decision mechanism that observes the first 

stage’s prediction performance; it chooses to use either one- or two-stage compression, 

based on the percentage of good predictions. 
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Figure 93.  (Upper) Program Counter: The mean compression ratio for the five 
program traces, showing that our two-stage proposal (DFCM + GZIP) has a slight 

advantage over a single GZIP stage. (Lower) Data Address: The poor percentage of 
good predictions in field two reflects in the poor compression ratio in field two for 
our proposed design. The first stage’s algorithm has to be carefully chosen in order 

to achieve a better compression ratio. 
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D. FUTURE WORK 

 In this thesis, we have proposed strawman architecture for a two-die, three-

dimensional processor with compression and crypto coprocessors for trace collection. 

Future work in this area will include: 

• Additional trace studies: debugging, profiling, and security all have a 

unique set of trace requirements. 

• Determining the speed of data generated to be compressed/encrypted: 

based on the traces collected and the speed of their generation, we can compute the 

amount of data per time unit that needs to be compressed and encrypted. 

• Defining the best algorithm for each trace in the first stage compression: as 

shown in this thesis, the first compression step requires a very specific and optimized 

algorithm to achieve a better compression ratio and throughput. Analysis has to be 

conducted for each specific trace. 

• Implementing a hardware simulation: The simulator is essential to define 

throughput and real performance and provides a better understanding of the memory and 

area required. 

• Determining the throughput of the device: given the amount of data to be 

processed and the memory requirements determined by the simulation, the throughput 

needs to be enough to process this data. 

• Determine the number/area of TSVs, not only for data but also power: this 

is an important 3D design decision. Not only does the number of TSVs need to be 

calculated, but also the special 3D package requirements need to be determined. 
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APPENDIX A DESCRIPTION OF SHA-1 BASED ON THE 
FEDERAL INFORMATION PROCESSING STANDARDS 

PUBLICATION 180-2 

A. OPERATIONS 

In order to describe the algorithm, we have to use the following operations on strings of 

32 bits [17,18]: 

1.  bitwise “and” 

2.  bitwise “or” 

3.  bitwise addition mod 2 

4.    flips “0 to 1” and ” 1 to 0 “ 

5.  addition of X and Y mod  where X,Y are integers mod  

6. The rotate left (circular left shift) operation,

, where x is a w-bit word, and n is an 

integer with 0 ≤ n < w.  is equivalent to a circular shift (rotation) of 

x by n positions to the left. 

 

7. Functions.  

SHA-1 uses a sequence of logical functions, , ,…, . Each function , 

where 0 ≤ t < 79, operates on three 32-bit words, x, y, and z, and produces a 

32-bit word as an output. The function  (x, y, z) is defined as follows [17]: 

(1)

 

 

8. Constants. 

SHA-1 uses a sequence of eighty constant 32-bit words, K0, K1,…, K79, which 

are given by [17]: 

X Y∧

X Y∨

X Y⊕

X¬

X Y+
322 322

( ) ( ) ( ).nROTL x x n x w n= << ∨ >> −

( )nROTL x

0f 1f 79f tf

tf

( , , )

Ch(x, y, z)=(x y)  ( x z)             0 t 19
Parity(x,y,z)=x y z                          20 t 39
                                                                                           
Ma

t x y zf =

∧ ⊕ ¬ ∧ ≤ ≤
⊕ ⊕ ≤ ≤

j(x,y,z)=(x y) (x z) (y z)    40 t 59
Parity(x,y,z)=x y z                          60 t 79 
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(2) 

     

 B. PREPROCESSING 

Preprocessing takes place before the initiation of the hash-computation process. 

This preprocessing stage consists of three steps: 1) padding the message, M, 2) parsing the 

padded message into blocks, and 3) determining the initial hash value,  [17]. 

1. Padding the Message 

Message M must be padded [17] before the hash-computation stage. Padding the 

message M ensures that the padded message is a multiple of 512 bits. 

2. Parsing the Padded Message  

During this stage [17], the padded message M is parsed into N m-bit blocks before 

the hash computation stage. The padded message is parsed into N 512-bit blocks, ,

,…, . Since the 512 bits of the input block can be represented by sixteen 32-bit 

words, the first 32 bits of the message block i are denoted as , the next 32 bits are 

denoted as , and so on until  [17]. 

3. Setting the Initial Hash Value ( )  

Before the hash-computation stage [17], the initial hash value, , should be 

determined. The size and number of words in  are related to the message digest size. 

The initial hash value, , consists of the following five 32-bit words, in hex [17]:  

= 67452301  

= efcdab89  

= 98badcfe  

5a827999            0 t 19
6ed9eba1            20 t 39
                                                                                                   
8f1bbcdc            40 t 59
ca62c1d6          

tK =

≤ ≤
≤ ≤

≤ ≤
 60 t 79 








≤ ≤

(0)H

(1)M
(2)M ( )NM

( )
0

iM

( )
1

iM ( )
15

iM

(0)H

(0)H

(0)H

(0)H
(0)

0H

(0)
1H

(0)
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= 10325476  

= c3d2e1f0  

C. SHA-1  

SHA-1 may be used to hash a message, M, having a length of bits, where 

. The algorithm uses 1) a message schedule of eighty 32-bit words, 2) five 

working variables of 32 bits each, and 3) a hash value of five 32-bit words. The final 

result of SHA-1 is a 160-bit message digest. The words of the message schedule are 

labeled . The five working variables are labeled a, b, c, d, and e. The 

words of the hash value are labeled , which will hold the initial hash 

value, , replaced by each successive intermediate hash value (after each message 

block is processed), , and ending with the final hash value, . SHA-1 also uses 

a single temporary word, T. [17] 

1. SHA-1 Preprocessing  

1. Pad the message, M.  

2. Parse the padded message into N 512-bit message blocks, , ,…, 

. 

3. Set the initial hash value, . 

2. SHA-1 Hash Computation 

The SHA-1 hash computation uses functions and constants. Addition (+) is 

performed modulo . After preprocessing is completed, each message block, 

, ,…, , is processed in order, using the following steps: [17] 

 

For i=1 to N: 

{ 

1. Prepare the message schedule, { }: 

(0)
3H

(0)
4H



640 2l≤ ≤

0, 1, 79.......,W W W

( ) ( ) ( )
0, 1, 4......,i i iH H H

(0)H

( )iH ( )NH
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( )NM
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322
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2. Initialize the five working variables, a, b, c, d, and e, with the 

 hash value:  

 

 

 

3. For t = 0 to 79:  

{  

 

 

   } 

4. Compute the  intermediate hash value :  

 

  } 

 

( )

1
3 8 14 16

                                                                             0 t 15

( W   W  W   W )                   16 t 79

i
t

t
t t t t

M
W

ROTL=

− − − −

 ≤ ≤


⊕ ⊕ ⊕ ≤ ≤

( 1)sti −

( 1)
0
( 1)

1
( 1)

2
( 1)

3
( 1)

4

i

i

i

i

i

a H
b H
c H
d H
e H

−

−

−

−

−

=

=

=

=

=

5

30

( ) ( , , )

( )

t t tT ROTL a f b c d e K W
e d
d c
c ROTL b
b a
a T

= + + + +
=
=

=
=
=

thi ( )iH

( ) ( 1)
0 0
( ) ( 1)

1 1
( ) ( 1)

2 2
( ) ( 1)

3 3
( ) ( 1)

4 4

i i

i i

i i

i i

i i

H a H
H b H
H c H
H d H
H e H

−

−

−

−

−

= +

= +

= +

= +

= +



 175 

 After repeating steps one through four a total of N times (i.e., after processing 

), the resulting 160-bit message digest of the message, M, is: 

. 

 

( )NM

( ) ( ) ( ) ( ) ( )
0 1 2 3 4|| || || ||N N N N NH H H H H
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APPENDIX B DESCRIPTION OF SHA-512 BASED ON THE 
FEDERAL INFORMATION PROCESSING STANDARDS 

PUBLICATION 180-2 

A. OPERATIONS 

In order to describe the algorithm, we have to use the following operations on 

strings of 64 bits [17,18].  

1.  bitwise “and” 

2.  bitwise “or” 

3.  bitwise addition mod 2 

4.    flips “0 to 1” and ” 1 to 0 “ 

5.  addition of X and Y mod  where X,Y are integers mod  

6. The right shift operation, , where x is a w-bit word, and n is 

an integer, with 0 ≤ n < w. 

7. The rotate right operation, , where x is a 

w-bit word, and n is an integer, with 0 ≤ n < w.  is equivalent to a 

circular shift (rotation) of x by n positions to the right. 

8. Functions.  

SHA-512 use six logical functions, where each function operates on 64-bit 

words, which are represented as x, y, and z. The result of each function is a new 64-bit 

word [17]. 

(1),(2) 

 

(3),(4) 

X Y∧
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X Y⊕

X¬
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( )nSHR x x n= >>
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( ) ( )nROTR x
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(5),(6) 

9. Constants 

SHA-512 uses a sequence of eighty constant 64-bit words, 

. These words represent the first sixty-four bits of the 

fractional parts of the cube roots of the first eighty prime numbers. A detailed list of 

these constant values in hex format is available in [17]. 

B. PREPROCESSING 

Preprocessing takes place before hash computation begins. This preprocessing 

consists of three steps: padding the message, M, parsing the padded message into blocks, 

and setting the initial hash value,  [16]. 

1. Padding the Message 

The message, M, shall be padded before hash computation begins. The purpose of 

this padding is to ensure that the padded message is a multiple of 1024 bits. Suppose that 

the length of the message, M, is  bits. Append the bit “1” to the end of the message, 

followed by k zero bits, where k is the smallest, non-negative solution to the equation 

+1+k=896mod1024. Then append the 128-bit block that is equal to the number expressed 

using a binary representation [17]. 

2. Parsing the Padded Message  

After a message has been padded, it must be parsed into N m-bit blocks before the 

hash computation can begin. The padded message is parsed into N 1024-bit blocks, ,

,…, . Since the 1024 bits of the input block may be expressed as sixteen 64-bit 

words, the first 64 bits of message block i are denoted as , the next 64 bits are 

denoted as , and so on, up to  [17]. 

 

{512} 1 8 7
0
{512} 19 61 6
1

( ) ( ) ( ) ( )               

( ) ( ) ( ) ( )  

ROTR x ROTR x SHR x
ROTR x ROTR x SHR x

σ χ

σ χ

= ⊕ ⊕

= ⊕ ⊕

{512} {512} {512}
0 1 79, ,..........,K K K

(0)H





(1)M
(2)M ( )NM

( )
0

iM

( )
1

iM ( )
15

iM



 179 

3. Setting the Initial Hash Value ( )  

Before hash computation begins for each of the secure hash algorithms, the initial 

hash value, , must be set. The size and number of words in depends on the 

message digest size. The initial hash value, , shall consist of the following eight 64-

bit words, in hex [17]:  

 

 

C. SHA-512 

SHA-512 may be used to hash a message, M, having a length of l bits, where 

. The algorithm uses 1) a message schedule of eighty 64-bit words, 2) eight 

working variables of 64 bits each, and 3) a hash value of eight 64-bit words. The final 

result of SHA-512 is a 512-bit message digest. The words of the message schedule are 

labeled W0, W1,…, W79. The eight working variables are labeled a, b, c, d, e, f, g, and h. 

The words of the hash value are labeled , which will hold the initial 

hash value, , replaced by each successive intermediate hash value , and ending 

with the final hash value, . SHA-512 also uses two temporary words, T1 and T2 

[17]. 

1. SHA-512 Preprocessing  

1. Pad the message, M.  

2. Parse the padded message into N 512-bit message blocks, , ,…, . 
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3. Set the initial hash value, . 

2. SHA-512 Hash Computation 

The SHA-512 hash computation uses functions and constants. Addition (+) is 

performed modulo . After preprocessing is completed, each message block, ,

,…, , is processed in order, using the following steps:[17] 

 

For i=1 to N: 

{ 

1. Prepare the message schedule,{ }: 

 

2. Initialize the eight working variables, a, b, c, d, e, f, g, and h, with 

the hash value:  

 

3.  For t=0 to 79: 

{ 
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  } 

4. Compute the  intermediate hash value : 

 

} 

 

After repeating steps one through four a total of N times (i.e., after processing 

), the resulting 512-bit message digest of the message, M, is: 
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